Open Access
Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01250 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202343001250 | |
Published online | 06 October 2023 |
- E. Anitua, L. Piñas, D. Dentistry, and G. Orive, “Retrospective Study of Short and Extra-Short Implants Placed in Posterior Regions : Influence of Crown-to-Implant Ratio on Marginal Bone Loss,” pp. 1–9, doi: 10.1111/cid.12073. [Google Scholar]
- P. Dhatrak, U. Shirsat, V. Deshmukh, and S. Sumanth, “Fatigue life prediction of commercial dental implant using analytical approach and verification by FEA,” Lect. Notes Mech. Eng., no. 9789811060014, pp. 203–212, (2018), doi: 10.1007/978-981-10-6002-1_16. [Google Scholar]
- S. Joshi, U. Bora, N. Karnik, K. Bhadri, P. Dhatrak, and S. Joshi, “Current and Emerging Technologies for Resonance Frequency Analysis Based Devices for Measuring Dental Implant Stability : A Review,” pp. 1–15. [Google Scholar]
- J. F. Valera-Jiménez, G. Burgueño-Barris, S. Gómez-González, J. López-López, E. Valmaseda-Castellón, and E. Fernández-Aguado, “Finite element analysis of narrow dental implants,” Dent. Mater., vol. 36, no. 7, pp. 927–935, (2020), doi: 10.1016/j.dental.2020.04.013. [CrossRef] [Google Scholar]
- M. C. Goiato, D. M. Dos Santos, J. F. Santiago, A. Moreno, and E. P. Pellizzer, “Longevity of dental implants in type IV bone: A systematic review,” Int. J. Oral Maxillofac. Surg., vol. 43, no. 9, pp. 1108–1116, (2014), doi: 10.1016/j.ijom.2014.02.016. [CrossRef] [Google Scholar]
- P. Dhatrak, U. Shirsat, S. Sumanth, and V. Deshmukh, “Numerical investigation on stress intensity around Bone-Implant interface by 3-Dimensional FEA and experimental verification by optical technique,” Mater. Today Proc., vol. 39, pp. 35–41, (2020), doi: 10.1016/j.matpr.2020.06.097. [Google Scholar]
- N. Karnik, K. Bhadri, U. Bora, S. Joshi, and P. Dhatrak, “A Mathematical Model for Biomechanical Evaluation of Micro-motion in Dental Prosthetics using Vibroacoustic RFA,” J. Med. Biol. Eng., vol. 41, no. 4, pp. 571–580, (2021), doi: 10.1007/s40846-021-00636-w. [CrossRef] [Google Scholar]
- C. A. A. Lemos et al., “Splinted and Nonsplinted Crowns with Different Implant Lengths in the Posterior Maxilla by Three-Dimensional Finite Element Analysis,” J. Healthc. Eng., vol. 2018, (2018), doi: 10.1155/2018/3163096. [Google Scholar]
- G. Telleman, G. M. Raghoebar, A. Vissink, L. Den Hartog, J. J. R. Huddleston Slater, and H. J. A. Meijer, “A systematic review of the prognosis of short (<10 mm) dental implants placed in the partially edentulous patient,” J. Clin. Periodontol., vol. 38, no. 7, pp. 667–676, (2011), doi: 10.1111/j.1600-051X.2011.01736.x. [CrossRef] [Google Scholar]
- L. Hingsammer, G. Watzek, and B. Pommer, “The influence of crown-to-implant ratio on marginal bone levels around splinted short dental implants: A radiological and clincial short term analysis,” Clin. Implant Dent. Relat. Res., vol. 19, no. 6, pp. 1090–1098, (2017), doi: 10.1111/cid.12546. [CrossRef] [PubMed] [Google Scholar]
- M. Implants, “Journal of Oral Implantology Microthreaded Implants and Crestal Bone Loss : A Systematic Review Microthreaded Implants and Crestal Bone Loss : A Systematic Review Ahmad Kutkut , DDS , MS , University of Kentucky College of Dentistry , Division of,” (2016). [Google Scholar]
- A. Ravidà, M. H. A. Saleh, M. C. Muriel, B. Maska, and H. L. Wang, “Biological and technical complications of splinted or nonsplinted dental implants: A decision tree for selection,” Implant Dent., vol. 27, no. 1, pp. 89–94, (2018), doi: 10.1097/ID.0000000000000721. [CrossRef] [PubMed] [Google Scholar]
- Yilmaz, “Strain Comparisons for Splinted and Nonsplinted Cement-Retained Implant Crowns,” vol. 26, no. 3, pp. 235–238, (2013), doi: 10.11607/ijp.3254. [Google Scholar]
- J. Nissan, O. Ghelfan, M. Gross, and G. Chaushu, “O ral Rehabilitation Analysis of load transfer and stress distribution by splinted and unsplinted implant-supported fixed cemented restorations,” no. 14, pp. 658–662, (2010), doi: 10.1111/j.1365-2842.2010.02096.x. [Google Scholar]
- K. Simonsson, K. Rydberg, and F. Johansson, “A Finite Element Analysis of Stress Distribution in Bone Tissue Surrounding Uncoupled or Splinted,” pp. 40–46, doi: 10.1111/j.1708-8208.2007.00059.x. [Google Scholar]
- K. Emerich, “Best Splinting Methods in Case of Dental Injury–A Literature Review,” vol. 44, no. 2, pp. 71–78, (2020), doi: 10.17796/1053-4625-44.2.1. [Google Scholar]
- J. Nissan, O. Ghelfan, and O. Gross, “The Effect of Crown / Implant Ratio and Crown Height Space on Stress Distribution in Unsplinted Implant,” YJOMS, vol. 69, no. 7, pp. –1939, (2011), doi: 10.1016/j.joms.2011.01.036. [Google Scholar]
- B. Kahler, J. Hu, C. S. Marriot-smith, and G. S. Heithersay, “Splinting of teeth following trauma : a review and a new splinting recommendation,” pp. 59–73, (2016), doi: 10.1111/adj.12398. [Google Scholar]
- D. L. Guichet, D. Yoshinobu, and A. A. Caputo, Effect of splinting and interproximal contact tightness on load transfer by implant restorations, vol. 87, no. 5. (2002), pp. 528–535. [Google Scholar]
- T. Sasaki, H. Nakata, A. Suzuki, T. Hada, and S. Kasugai, “Journal of the Mechanical Behavior of Biomedical Materials Comparison of splinted and non-splinted superstructures of three implants placed in a mandibular distal extension model with missing teeth using modal analysis,” J. Mech. Behav. Biomed. Mater., vol. 112, no. July, p. 104050, (2020), doi: 10.1016/j.jmbbm.2020.104050. [CrossRef] [Google Scholar]
- D. Lops, E. Bressan, G. Pisoni, B. Corazza, and E. Romeo, “Short Implants in Partially Edentulous Maxillae and Mandibles : A 10 to 20 Years Retrospective Evaluation,” vol. 2012, (2012), doi: 10.1155/2012/351793. [Google Scholar]
- P. Dhatrak, U. Shirsat, S. Sumanth, and V. Deshmukh, “Finite Element Analysis and Experimental Investigations on Stress Distribution of Dental Implants around Implant-Bone Interface,” Mater. Today Proc., vol. 5, no. 2, pp. 5641–5648, (2018), doi: 10.1016/j.matpr.2017.12.157. [CrossRef] [Google Scholar]
- S. Roy, S. Dey, N. Khutia, A. Roy Chowdhury, and S. Datta, “Design of patient specific dental implant using FE analysis and computational intelligence techniques,” Appl. Soft Comput. J., vol. 65, pp. 272–279, (2018), doi: 10.1016/j.asoc.2018.01.025. [CrossRef] [Google Scholar]
- P. Dhatrak, V. Girme, U. Shirsat, S. Sumanth, and V. Deshmukh, “Significance of Orthotropic Material Models to Predict Stress Around Bone-Implant Interface Using Numerical Simulation,” Bionanoscience, vol. 9, no. 3, pp. 652–659, (2019), doi: 10.1007/s12668-019-00649-5. [CrossRef] [Google Scholar]
- G. Mistry, O. Shetty, S. Shetty, and R. Singh, “Measuring implant stability: A review of different methods,” J. Dent. Implant., vol. 4, no. 2, p. 165, (2014), doi: 10.4103/0974-6781.140891. [CrossRef] [Google Scholar]
- G. Bergkvist, K. Simonsson, K. Rydberg, F. Johansson, and T. Dérand, “A finite element analysis of stress distribution in bone tissue surrounding uncoupled or splinted dental implants,” Clin. Implant Dent. Relat. Res., vol. 10, no. 1, pp. 40–46, (2008), doi: 10.1111/j.1708-8208.2007.00059.x. [CrossRef] [PubMed] [Google Scholar]
- E. P. Pellizzer, C. C. De Mello, J. F. Santiago Junior, V. E. De Souza Batista, D. A. De Faria Almeida, and F. R. Verri, “Analysis of the biomechanical behavior of short implants: The photo-elasticity method,” Mater. Sci. Eng. C, vol. 55, pp. 187–192, (2015), doi: 10.1016/j.msec.2015.05.024. [CrossRef] [Google Scholar]
- B. Yilmaz, J. Mess, J. Seidt, and N. L. Clelland, “Strain Comparisons for Splinted and Nonsplinted Cement-Retained Implant Crowns,” Int. J. Prosthodont., vol. 26, no. 3, pp. 235–238, (2013), doi: 10.11607/ijp.3254. [CrossRef] [Google Scholar]
- [C. Garaicoa-Pazmiño et al., “Influence of Crown/Implant Ratio on Marginal Bone Loss: A Systematic Review,” J. Periodontol., vol. 85, no. 9, pp. 1214–1221, (2014), doi: 10.1902/jop.2014.130615. [CrossRef] [PubMed] [Google Scholar]
- M. Bayraktar, B. A. Gultekin, S. Yalcin, and E. Mijiritsky, “Effect of crown to implant ratio and implant dimensions on periimplant stress of splinted implant-supported crowns: A finite element analysis,” Implant Dent., vol. 22, no. 4, pp. 406–413, (2013), doi: 10.1097/ID.0b013e31829c224d. [CrossRef] [PubMed] [Google Scholar]
- M. Toniollo, A. Macedo, D. Pupim, D. Zaparolli, and M. da Gloria Chiarello de Mattos, “Finite Element Analysis of Bone Stress in the Posterior Mandible Using Regular and Short Implants, in the Same Context, with Splinted and Nonsplinted Prostheses,” Int. J. Oral Maxillofac. Implants, vol. 32, no. 4, pp. e199–e206, (2017), doi: 10.11607/jomi.5611 [CrossRef] [Google Scholar]
- M. Meimandi, M. R. T. Ardakani, R. Amid, A. M. Motlagh, and S. Beheshti, “Comparison of stress and strain distribution around splinted and nonsplinted 6-mm short implants in posterior mandible: A finite element analysis study,” Implant Dent., vol. 27, no. 1, pp. 74–80, (2018), doi: 10.1097/ID.0000000000000709. [CrossRef] [PubMed] [Google Scholar]
- L. Baggi, I. Cappelloni, D. Girolamo, F. Maceri, and G. Vairo, “The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry : A three- dimensional finite element analysis,” J. Prosthet. Dent., vol. 100, no. 6, pp. 422–431, (2008), doi: 10.1016/S0022-3913(08)60259-0. [CrossRef] [Google Scholar]
- A. Di Fiore et al., “Influence of Crown - to - Implant Ratio on Long - Term Marginal Bone Loss Around Short Implants,” Int J Oral Maxillofac Implant. 2019 July/August;34(4), pp. 1–22, (2019), doi: 10.11607/jomi.7161. [Google Scholar]
- B. L. Almeida, O. C. Font, A. Correia, J. M. Mari, and R. Figueiredo, “Effect of crown to implant ratio and implantoplasty on the fracture resistance of narrow dental implants with marginal bone loss : an in vitro study,” BMC Oral Health, pp. 1–10, 2020, doi: 10.1186/s12903-020-01323-z. [Google Scholar]
- J. Schulte, A. Kovacs, M. Weed, and S. Chuang, “Crown-to-Implant Ratios of Short-Length Implants,” J Oral Implant. 2010;36(6), pp. 425–433, (2005), doi: 10.1563/AAID-JOI-D-09-00071. [Google Scholar]
- N. M. Padhye, T. Lakha, N. Naenni, and M. Kheur, “Effect of crown-to-implant ratio on the marginal bone level changes and implant survival - A systematic review and meta-analysis,” J. Oral Biol. Craniofacial Res., vol. 4, pp. 705–713, (2020), doi: 10.1016/j.jobcr.2020.10.002. [CrossRef] [Google Scholar]
- J. Qian, A. Wennerberg, and T. Albrektsson, “Reasons for Marginal Bone Loss around,” Clin Implant Dent Relat Res. (2012) Dec;14(6)792-807, no. Figure 1, pp. 792–807, doi: 10.1111/cid.12014. [CrossRef] [PubMed] [Google Scholar]
- S. Annibali, M. P. Cristalli, D. D. Aquila, I. Bignozzi, G. La Monaca, and A. Pilloni, “Short Dental Implants : A Systematic Review,” J Dent Res. (2012) Jan;91(1)25-32, 2012, doi: 10.1177/0022034511425675. [CrossRef] [PubMed] [Google Scholar]
- E. Anitua and M. H. Alkhraisat, “Short dental implants in patients with oral lichen planus : a long-term follow-up.,” Br J Oral Maxillofac Surg. 2018 Apr;56(3)216-220, no. 2017, (2018), doi: 10.1016/j.bjoms.2018.02.003. [CrossRef] [Google Scholar]
- S. S. Al-johany, “Dental Implant Length and Diameter : A Proposed,” Classif. Scheme. J Prosthodont. 2017 Apr;26(3)252-260, vol. 00, pp. 1–8, (2016), doi: 10.1111/jopr.12517. [Google Scholar]
- S. Rameh, A. Menhall, and R. Younes, “Key factors influencing short implant success,” Oral Maxillofac Surg. (2020) Sep;24(3)263-275, vol. 2, pp. 1–9, 2020, doi: 10.1007/s10006-020-00841-y. [CrossRef] [PubMed] [Google Scholar]
- P. N. Uehara, V. H. Matsubara, F. Igai, N. Sesma, M. K. Mukai, and M. G. Araujo, “Short Dental Implants ( ≤ 7mm ) Versus Longer Implants in Augmented Bone Area : A Meta-Analysis of Randomized Controlled Trials,” pp. 354–365, (2018), doi: 10.2174/1874210601812010354. [Google Scholar]
- S. M. Compton, D. Clark, S. Chan, I. Kuc, D. D. S. B. A. Wubie, and L. Levin, “Dental Implants in the Elderly Population: A Long-Term Follow-up,” Int J Oral Maxillofac Implant. 2017 Jan/Feb;32(1)164-170, vol. 32, no. 1, (2017), doi: 10.11607/jomi.5305. [CrossRef] [Google Scholar]
- A.-P. R. Estévez-Pérez D. Bustamante-Hernández N, Labaig-Rueda C, Solá-Ruíz MF, Amengual-Lorenzo J, García-Sala Bonmatí F, Zubizarreta-Macho Á, “Comparative Analysis of Peri-Implant Bone Loss in Extra-Short , Short , and Conventional Implants . A 3-Year Retrospective Study,” Int J Env. Res Public Heal. 2020 Dec 11;17(24)9278, pp. 1–14, (2020), doi: 10.3390/ijerph17249278. [Google Scholar]
- A. Geramy and S. Habibzadeh, “Stress distribution in splinted and unsplinted implant-supported maxillary overdentures: A 3D finite element analysis,” Implant Dent., vol. 27, –62, (2018), doi: 10.1097/ID.0000000000000708. [Google Scholar]
- M. E. Benlidayi, Y. Ucar, U. Tatli, and O. Ekren, “Short Implants Versus Standard Implants : Midterm Outcomes of a Clinical Study,” Implant Dent. 2018 Feb;27(1)95-100, no. 4, (2018), doi: 10.1097/ID.0000000000000710. [CrossRef] [PubMed] [Google Scholar]
- V. E. D. S. Batista, F. R. Verri, and C. A. A. Lemos, “Should the restoration of adjacent implants be splinted or nonsplinted ? A systematic review and meta-analysis,” J. Prosthet. Dent., pp. 1–11, doi: 10.1016/j.prosdent.(2018).03.004. [Google Scholar]
- H. Wu, Q. Shi, and J. Wang, “Failure Risk of Short Dental Implants Under Immediate Loading : A Meta-Analysis,” J Prosthodont. 2021 Aug;30(7)569-580, vol. 0, pp. 1–12, (2021), doi: 10.1111/jopr.13376. [CrossRef] [Google Scholar]
- S. Lúcia, D. De Moraes, F. R. Verri, and J. F. Santiago, “A 3-D Finite Element Study of the Influ e n c e o f C r o wn -Imp lan t Ratio on Stress Distribution,” Braz Dent J., vol. 24, pp. 635–641, (2013), doi: 10.1590/0103-6440201302287. [CrossRef] [PubMed] [Google Scholar]
- E. Anitua and M. H. Alkhraisat, “Clinical Effectiveness of 6 . 5-mm-Long Implants to Support Two-Implant Fixed Prostheses in Premolar-Molar Region : The Influence of Immediate Loading and the Length of Splinting,” no. Table 1, pp. 27–30, (2018), doi: 10.1111/jopr.12761. [Google Scholar]
- S. L. Albrektsson T, Chrcanovic B, Östman PO, “Initial and long-term crestal bone responses to modern dental implants,” Periodontol 2000. (2017) Feb; 73(1)41-50, vol. 73, no. 7, pp. 41–50, 2017, doi: 10.1111/prd.12176. [CrossRef] [PubMed] [Google Scholar]
- H. Z. Bin S, “Implant Abutment Selection Criteria,” Hua Xi Kou Qiang Yi Xue Za Zhi. 2017 Apr 1;35(2)124-126. Chinese, vol. 2, no. 8, pp. 31–38, (2018), doi: 10.7518/hxkq.2017.02.003. [Google Scholar]
- I. Hasan, F. Heinemann, and C. Bourauel, “Biomechanical finite element analysis of small diameter and short dental implant,” Biomed Tech (Berl). 2010 Dec;55(6)341-50, pp. 341–350, (2010), doi: 10.1515/BMT.2010.049. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.