Open Access
Issue
E3S Web Conf.
Volume 434, 2023
4th International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2023)
Article Number 02036
Number of page(s) 12
Section Civil Engineering
DOI https://doi.org/10.1051/e3sconf/202343402036
Published online 12 October 2023
  1. Li, J., and Hao, H. (2014). Numerical study of concrete spall damage due to blast loads. International Journal of Impact Engineering, Elsevier, 68: 41-55. [CrossRef] [Google Scholar]
  2. Hao, H., Hao, Y., Li, J., and Chen, W. (2016). Review of the current practices in blast-resistant analysis and design of concrete structures. Advances in Structural Engineering, SAGE, 19(8): 1193-1223. [CrossRef] [Google Scholar]
  3. Anas, S. M., Ansari, Md. I., and Alam, M. (2020). Performance of masonry heritage building under air-blast pressure without and with ground shock. Australian Journal of Structural Engineering, Taylor & Francis, 21(4), pp. 329-344, DOI: 10.1080/13287982.2020.1842581. [CrossRef] [Google Scholar]
  4. IS 4991 (1968). Criteria for blast resistant design of structures for explosions above ground. Design Standard, Bureau of Indian Standards, New Delhi, India. [Google Scholar]
  5. Anas, S. M., Alam, M., and Umair, M. (2021). Experimental and Numerical Investigations on Performance of Reinforced Concrete Slabs under Explosive-induced Air-blast Loading: A stateof-the-art review. Structures, Elsevier, 31, pp. 428-461, DOI: 10.1016/j.istruc.2021.01.102. [CrossRef] [Google Scholar]
  6. Anas, S. M., Alam, M., and Umair, M. (2021). Air-blast and ground shockwave parameters, shallow underground blasting, on the ground and buried shallow underground blast-resistant shelters: A review”. International Journal of Protective Structures, SAGE, 13(1), pp. 99-139, DOI: 10.1177/2F20414196211048910. [Google Scholar]
  7. Anas, S. M., and Alam, M. (2021). Comparison of Existing Empirical Equations for Blast Peak Positive Overpressure from Spherical Free Air and Hemispherical Surface Bursts. Iranian Journal of Science and Technology, Transactions of Civil Engineering, Springer, 46, pp. 965-984, DOI: 10.1007/s40996-021-00718-4. [Google Scholar]
  8. Anas, S. M. and Alam, M. (2022). Close-range Blast Response Prediction of Hollow Circular Concrete Columns with Varied Hollowness Ratio, Arrangement of Compression Steel, and Confining Stirrups’ Spacing. Iranian Journal of Science and Technology, Transactions of Civil Engineering, Springer, DOI: 10.1007/s40996-022-00951-5. Article in press. [Google Scholar]
  9. Anas, S. M., Alam, M., Isleem, H. F., Najm, H. M., and Sabri, M. M. S. (2022). Role of cross-diagonal reinforcements in lieu of seismic confining stirrups in the performance enhancement of square RC columns carrying axial load subjected to close-range explosive loading. Frontiers in Materials, Frontiers, DOI: 10.3389/fmats.2022.1002195. Article in press. [Google Scholar]
  10. Anas, S. M., Shariq, M., and Alam, M. (2022). Performance of Axially Loaded Square RC Columns with Single/Double Confinement Layer(s) and Strengthened with C-FRP Wrapping under Close-in Blast. Materials Today: Proceedings, Elsevier, 58(4), pp. 1128-1141, DOI: 10.1016/j.matpr.2022.01.275. [CrossRef] [Google Scholar]
  11. Shariq, M., Saifi, F., Alam, M., and Anas, S. M. (2022). Effect of Concrete Strength on the Dynamic Behavior of Axially Loaded Reinforced Concrete Column Subjected to Close-range Explosive Loading. Materials Today: Proceedings, Elsevier, DOI: 10.1016/j.matpr.2022.07.313. Article in press. [Google Scholar]
  12. Shariq, M., Alam, M., Husain, A., and Anas, S. M. (2022). Jacketing with steel angle sections and wide battens of RC column and its influence on blast performance. Asian Journal of Civil Engineering, Springer, 23, pp. 487-500, DOI: 10.1007/s42107-022-00437-9. [CrossRef] [Google Scholar]
  13. Tahzeeb, R., Alam, M., Anas, S. M., and Muddassir, S. M. (2023). Dynamic response of CFST column with inplane cross reinforcement and partial CFRP wrapping upon contact blast. Innovative Infrastructure Solutions, Springer. Article in press. DOI: 10.1007/s41062-023-01201-x. [Google Scholar]
  14. Tahzeeb, R., Alam, M., and Muddassir, S. M. (2022). Strengthening of Axially Loaded Circular RC Column under Close-In and Contact Blasts: A Numerical Investigation. In: Nandagiri, L., Narasimhan, M.C., Marathe, S. (eds) Recent Advances in Civil Engineering. CTCS 2021. Lecture Notes in Civil Engineering, vol 256., pp. 387-404, Springer, Singapore. DOI: 10.1007/978-981-19-1862-9_24. [Google Scholar]
  15. Anas, S. M., Alam, M., and (2023). Prediction of Impact Response of Square Reinforced Concrete (RC) Slab with Square/Circular Opening under Drop-weight Impact using FEM Simulation. Asian Journal of Civil Engineering, Springer. [Google Scholar]
  16. Anas, S. M., Alam, M., and Shariq, M. (2023). “Damage Response of Conventionally Reinforced Two-way Spanning Concrete Slab under Eccentric Impacting Drop Weight Loading”. Defence Technology, Elsevier, 19, pp. 12-34, DOI: 10.1016/j.dt.2022.04.011. [CrossRef] [Google Scholar]
  17. Anas, S. M., Shariq, M., Alam, M., Yosri, A. M., Mohamed, A., and AbdelMongy, M. (2023). “Influence of Supports on the Low-Velocity Impact Response of Square RC Slab of Standard Concrete and Ultra-High Performance Concrete: FEM-Based Computational Analysis”. Buildings, MDPI, 13(5). DOI: 10.3390/buildings13051220. [CrossRef] [Google Scholar]
  18. Anas, S. M., and Alam, M. (2022). “Role of Shear Reinforcements on the Punching Shear Resistance of TwoWay RC Slab subjected to Impact Loading”. Materials Today: Proceedings, Elsevier, DOI: 10.1016/j.matpr.2022.08.510. [Google Scholar]
  19. Anas, S. M., Alam, M., and Shariq, M. (2022). “Behavior of Two-way RC Slab with Different Reinforcement Orientation Layouts of Tension Steel under Drop Load Impact”. Materials Today: Proceedings, Elsevier, DOI: 10.1016/j.matpr.2022.08.509. [Google Scholar]
  20. Kingery, C. N., and Bulmash, G. (1984). Air blast parameters from TNT spherical air burst and hemispherical surface burst. Ballistic Research Laboratories, U.S. [Google Scholar]
  21. Pereira, J. M., Campos, J., and Lourenço, P. B. (2014). Experimental study on masonry infill walls under blast loading. In: Proceedings of the 9th International Masonry Conference, pp. 1-9. [Google Scholar]
  22. Shi, Y., Hao, H., and Li, X. Z. (2007). Numerical simulation of blast wave interaction with structure columns. Shock waves, Springer, 17:113-133. [CrossRef] [Google Scholar]
  23. Li, Y., Chen, Z., Ren, X., Tao, R., Gao, R., and Fang, D. (2020). Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading. International Journal of Impact Engineering, 142: 1-11. [Google Scholar]
  24. Al-Dala’ien, R. N., Syamsir, A., Usman, F., & Abdullah M. J. (2023). The effect of the W-shape stirrups shear reinforcement on the dynamic behavior of RC flat solid slab subjected to the low-velocity impact loading. Results in Engineering, vol. 19, p. 101353, Sep. 2023, DOI: 10.1016/j.rineng.2023.101353. [Google Scholar]
  25. Al-Dala’ien, R. N., Syamsir, A., Abu Bakar, M. S., Usman, F., & Abdullah, M. J. (2023). Failure Modes Behavior of Different Strengthening Types of RC Slabs Subjected to Low-Velocity Impact Loading: A Review. Journal of Composites Science, vol. 7, no. 6, p. 246, Jun. 2023, DOI: 10.3390/jcs7060246. [Google Scholar]
  26. Westine, P. S., and Baker, W. E. (1975). Energy solutions for predicting deformations in blast-loaded structures. Technical report to Edgewood Arsenal, Aberdeen proving ground, Md., United States; 1975. [Google Scholar]
  27. Tseng, G., Stea, W., Weissman, S., Dobbs, N., and Price, P. (1976). Elastic and elasto-plastic computerized dynamic analysis of frame structures subjected to blast overpressure. In: Proc of the national struct eng conf, asce struct div spec conf, methods of struct anal. p. 22-5. [Google Scholar]
  28. Stea, W., Tseng, G., Kossover, D., Weissman, S., and Dobbs, N. (1977). Nonlinear analysis of frame structures subjected to blast overpressures. Final report to Ammann and Whitney. New York. [Google Scholar]
  29. Nassr, A. A., Razaqpur, A. G., Tait, M. J., Campidelli, M., and Foo, S. (2013). Dynamic response of steel columns subjected to blast loading. Journal of Structural Engineering;140(7):04014036. DOI: 10.1061/(ASCE)ST.1943-541X.0000920. [Google Scholar]
  30. Nassr, A. A., Razaqpur, A. G., Tait, M. J., Campidelli, M., and Foo, S. (2013). Strength and stability of steel beam columns under blast load. International Journal of Impact Engineering; 55:34-48. DOI: 10.1016/j.ijimpeng.2012.11.010. [CrossRef] [Google Scholar]
  31. Magallanes, J. M., Martinez, R., and Koenig, J. W. (2006). Experimental results of the AISC full-scale column blast test. Rep. TR-06, vol. 20. [Google Scholar]
  32. Nassr, A. A., Razaqpur, A. G., and Campidelli, M. (2017). Effect of initial blast response on RC beams failure modes. Nucl. Eng. Des., 320; pp. 437-451 [2017/08/15/ 2017]. [CrossRef] [Google Scholar]
  33. Momeni, M., Hadianfard, M. A., Bedon, C., and Baghlani, A. (2019). Numerical damage evaluation assessment of blast loaded steel columns with similar section properties. Structures, 20:189-203. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.