Issue |
E3S Web Conf.
Volume 434, 2023
4th International Conference on Energetics, Civil and Agricultural Engineering (ICECAE 2023)
|
|
---|---|---|
Article Number | 02036 | |
Number of page(s) | 12 | |
Section | Civil Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202343402036 | |
Published online | 12 October 2023 |
Numerical Modeling of Steel Column for its Response to Large Explosive Loading using CEL-FEM Approach
1 Department of Civil Engineering, Jamia Millia Islamia (A Central University), 110025 New Delhi, India
2 Department of Civil Engineering, Netaji Subhas University of Technology, 110073 New Delhi, India
3 Technical Institute of Suwaria, Middle Technical University, Baghdad, Iraq
4 “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers” National Research University, 100000 Tashkent, Uzbekistan
* Corresponding author: mohdanas43@gmail.com
In the past few decades, there has been a growing public concern regarding the protection of infrastructures against extreme events, specifically explosive detonations. Traditional structural design has predominantly focused on accounting for gravity, seismic, and wind loads as the primary factors to consider. The rise in subversive attacks has led to a heightened focus on blast load and its impact on infrastructures. Unconfined, surface explosions are a common type of terrorist attack that occurs outside of buildings. This has necessitated a greater understanding of the effects these explosions can have on structures. A comprehensive numerical model was created in Abaqus for a steel column measuring 2.41m in length and having a W150x24 cross-section. The model was then subjected to a powerful explosion equivalent to 100kg-TNT, with a standoff distance of 10.30m. To achieve this, an Eulerian-Lagrangian approach coupled with the Finite-element method (CEL-FEM) was employed. A thorough investigation was conducted by modifying the explosion's altitude (i.e., blast height), and the subsequent dynamic responses were analyzed and discussed. The outcomes of this investigation significantly enhance our comprehension of how steel columns respond when subjected to intense explosive forces.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.