Open Access
Issue
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
Article Number 03042
Number of page(s) 8
Section Environment Science
DOI https://doi.org/10.1051/e3sconf/202344803042
Published online 17 November 2023
  1. IPCC, Climate Change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change, pp. 111–128, Eds. Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow (Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2014) [Google Scholar]
  2. European Commission, Paris Agreement, European Commission (2015), https://climate.ec.europa.eu/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_en [Google Scholar]
  3. United Nation Climate Change, Parties Indonesia, UNFCC (2016), https://unfccc.int/node/61083 [Google Scholar]
  4. Undang-Undang Nomor 16 Tahun 2016 tentang Pengesahan Paris Agreement to the United Nations Framework Convention On Climate Change (Kementerian Sekretariat Negara, p.71, 2016), https://jdih.setneg.go.id/Produk [Google Scholar]
  5. KLHK, Laporan IGRK MPV 2021, 7, (Direktorat Jenderal Pengendalian Perubahan Iklim KLHK Republik Indonesia, Jakarta, 2022) [Google Scholar]
  6. D. G. J. Premakumara et al., Reduction of greenhouse gases (GHGs) and short-lived climate pollutants (SLCPs) from municipal solid waste management (MSWM) in the Philippines: Rapid review and assessment, Waste Manag., 80, pp. 397–405 (2018), https://doi.org/10.1016/j.wasman.2018.09.036 [CrossRef] [PubMed] [Google Scholar]
  7. T. V Ramachandra, H. A. Bharath, G. Kulkarni, and S. S. Han, Municipal solid waste generation, composition and GHG emissions in Bangalore, India, Renew. Sustain. Energy Rev., 82, June 2017, pp. 1122–1136 (2018), https://doi.org/10.1016/j.rser.2017.09.085 [CrossRef] [Google Scholar]
  8. S. Kaza, L. Yao, P. Bhada-Tata, and F. Van Woerden, What a Waste 2.0: A Global snapshot of solid waste management to 2050 (The World Bank Group, Washington, DC USA, 2018) [CrossRef] [Google Scholar]
  9. DLHK Kota Kendari, Kebijakan dan strategi daerah (Jaktstrada) pengolahan sampah Kota Kendari (Dinas Lingkungan Hidup dan Kehutanan Kota Kendari, 2017) [Google Scholar]
  10. F. E. Aghdam, C. Scheutz, and P. Kjeldsen, Impact of meteorological parameters on extracted landfill gas composition and flow, Waste Manag., 87, pp. 905–914 (2019), https://doi.org/10.1016/j.wasman.2018.01.045. [CrossRef] [Google Scholar]
  11. P. Ghosh, G. Shah, R. Chandra, S. Sahota, and H. Kumar, Bioresource Technology Assessment of methane emissions and energy recovery potential from the municipal solid waste landfill of Delhi, India, Bioresour. Technol., 272, September 2018, pp. 611–615 (2019), https://doi.org/10.1016/j.biortech.2018.10.069. [CrossRef] [Google Scholar]
  12. S. Fallahizadeh, M. Rahmatinia, and H. Soleimani, Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran, MethodsX, 6, pp. 391–398 (2019), https://doi.org/10.1016/j.mex.2019.02.013. [CrossRef] [Google Scholar]
  13. BPS Kota Kendari, Kendari municipality in figures (Statistic of Kendari Municipality, 2022) [Google Scholar]
  14. N. Angriani and A. Suyuti, Electricity energy potential from landfill gas Puwatu Landfill Kendari Municipality, J. Anal., 6, 2, pp. 193–198 (2017) [Google Scholar]
  15. H. S. Cho, H. S. Moon, and J. Y. Kim, Effect of quantity and composition of waste on the prediction of annual methane potential from landfills, Bioresour. Technol., 109, pp. 86–92 (2012), 10.1016/j.biortech.2012.01.026. [CrossRef] [Google Scholar]
  16. C. Xiaoli et al., Characteristics of environmental factors and their effects on CH4 and CO2 emissions from a closed landfill: An ecological case study of Shanghai, Waste Manag., 30, 3, pp. 446–451 (2010), https://doi.org/10.1016/j.wasman.2009.09.047. [CrossRef] [PubMed] [Google Scholar]
  17. B. D. Xi et al., Effect of inoculation methods on the composting efficiency of municipal solid wastes, Chemosphere, 88, no. 6, pp. 744–750 (2012), https:// doi.org/10.1016/j.chemosphere.2012.04.032. [CrossRef] [PubMed] [Google Scholar]
  18. A. Sil, S. Kumar, and R. Kumar, Formulating LandGem model for estimation of landfill gas under Indian scenario, Int. J. Environ. Technol. Manag., 17, Nos. 2/3/4, pp. 293–299 (2014) [CrossRef] [Google Scholar]
  19. A. Alexander, C. Burklin, and A. Singleton, Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide, U.S. Environmental Protection Agency Office of Research and Development, Washington, DC USA 2005. [Google Scholar]
  20. DLHK Kota Kendari, Perencanaan teknis manajemen persampahan TPA Kota Kendari (2014) [Google Scholar]
  21. T. Tsatsarelis and A. Karagiannidis, ‘Estimation of future methane production from hellenic landfills’, Glob. Nest J., 11, 2, pp. 162–171 (2009) https:doi.org/10.30955/gnj.000591. [Google Scholar]
  22. S. Sadeghi, B. Shahmoradi, and A. Maleki, Estimating methane gas generation rate from Sanandaj City Landfill Using LANDGEM Software, Res. J. Environ. Sci., 9,6, pp. 280–288 (2015), https://doi.org/10.3923/rjes.2015.280.288. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.