Open Access
Issue |
E3S Web Conf.
Volume 455, 2023
First International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2023 (ICGEST 2023)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 11 | |
Section | Sustainable Technology in Construction | |
DOI | https://doi.org/10.1051/e3sconf/202345503010 | |
Published online | 05 December 2023 |
- Ali Alsalman, Lateef N. Assi, Rahman S. Kareem, Kealy Carter, Paul Ziehl, Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete, Cleaner Environmental Systems, Volume 3, 2021, 100047, ISSN 2666-7894, https://doi.org/10.1016Zj.cesvs.2021.100047. [CrossRef] [Google Scholar]
- Mounika, G., Baskar, R. & Sri Kalyana Rama, J. Rice husk ash as a potential supplementary cementitious material in concrete solution towards sustainable construction. Innovative Infrastructure Solutions 7, 51 (2022). https://doi.org/10.1007/s41062-021-00643-5 [CrossRef] [Google Scholar]
- Jixiang Wang, Tianyong Huang, Le Han, Fuzhu Xie, Ze Liu, Donming Wang, Optimization of alkali-activated concrete based on the characteristics of binder systems, Construction and Building Materials, Volume 300, 2021, 123952, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2021.123952. [CrossRef] [Google Scholar]
- Ganta Mounika, Baskar Ramesh, J.S. Kalyana Rama, Experimental investigation on physical and mechanical properties of alkali activated concrete using industrial and agro waste, Materials Today: Proceedings, Volume 33, Part 7, 2020, Pages 4372–4376, ISSN 2214-7853, https://doi.org/10.1016/jmatpr.2020.07.634. [CrossRef] [Google Scholar]
- Shi, C., Roy, D., & Krivenko, P. (2003). Alkali-Activated Cements and Concretes (1st ed.). CRC Press. https://doi.org/10.1201/9781482266900 [CrossRef] [Google Scholar]
- Provis, J. L., & Van Deventer, J. S. (Eds.). (2013). Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM (Vol. 13). Springer Science & Business Media. [Google Scholar]
- Ahmed Z. Khalifa, Özlem Cizer, Yiannis Pontikes, Andrew Heath, Pascaline Patureau, Susan A. Bernal, Alastair T.M. Marsh, Advances in alkali-activation of clay minerals, Cement and Concrete Research, Volume 132, 2020, 106050, ISSN 0008-8846, https://doi.org/10.1016/j.cemconres.2020.106050. [CrossRef] [Google Scholar]
- Guangwei Liang, Huajun Zhu, Zuhua Zhang, Qisheng Wu, Jianzhou Du, Investigation of the waterproof property of alkali-activated metakaolin geopolymer added with rice husk ash, Journal of Cleaner Production, Volume 230, 2019, Pages 603–612, ISSN 0959-6526, https://doi.org/10.1016/jjclepro.2019.05.111. [CrossRef] [Google Scholar]
- P. Sturm, G.J.G. Gluth, H.J.H. Brouwers, H.-C. Kühne, Synthesizing one-part geopolymers from rice husk ash, Construction and Building Materials, Volume 124, 2016, Pages 961–966, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2016.08.017. [CrossRef] [Google Scholar]
- Rafael Andres Robayo-Salazar, Ruby Mejía de Gutiérrez, Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: A review, Construction and Building Materials, Volume 189, 2018, Pages 109–118, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2018.08.174. [CrossRef] [Google Scholar]
- Dejaegher, B.; Vander Heyden, Y. Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J. Pharm. Biomed. Anal. 2011, 56, 141–158 [CrossRef] [Google Scholar]
- Chong, B.W.; Othman, R.; Jaya, R.P.; Doh, S.I.; Li, X.F.; Ramli, N.I. Properties of Concrete with Eggshell Powder and Tyre Rubber Crumb. Key Eng. Mater. 2021, 879, 34–48 [CrossRef] [Google Scholar]
- Rizalman, A.N.; Lee, C.C. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Predicting the Compressive Strength of POFA Concrete. Appl. Model. Simul. 2020, 4, 210–216. [Google Scholar]
- Silva, F.A.N.; Delgado, J.M.P.Q.; Cavalcanti, R.S.; Azevedo, A.C.; Guimarães, A.S.; Lima, A.G.B. Use of Nondestructive Testing of Ultrasound and Artificial Neural Networks to Estimate Compressive Strength of Concrete. Buildings 2021, 11, 44. [CrossRef] [Google Scholar]
- Al-Fasih, Mohammed & Huseien, Ghasan & Ibrahim, Izni & Mohd. Sam, Abdul Rahman & Algaifi, Hassan & Alyousef, Rayed. (2021). Synthesis of rubberized Alkali-activated Concrete: Experimental and numerical evaluation. Construction and Building Materials. 303. 124526. 10.1016/j.conbuildmat.2021.124526. [CrossRef] [Google Scholar]
- Olonade, Kolawole & Fitriani, Heni & Kola, Olutobi. (2017). Regression models for compressive strength of concrete under different curing conditions. MATEC Web of Conferences. 101. 05013. 10.1051/matecconf/201710105013. [CrossRef] [EDP Sciences] [Google Scholar]
- Diaz-Loya, E. & Allouche, Erez & Vaidya, Shrinath. (2011). Mechanical Properties of Fly-AshBased Geopolymer Concrete. ACI Materials Journal. 108. 300–306. [Google Scholar]
- Qiu, S.; Tang, B. Application of Multiple Linear Regression Analysis in Polymer Modified Mortar Quality Control. In Proceedings of the 2nd International Conference on Electronic and Mechanical Engineering and Information Technology (2012), Shenyang, China, 7 September 2012; Atlantis Press: Paris, France, 2012; pp. 1124–1127. [Google Scholar]
- Siddique, R.; Aggarwal, P.; Aggarwal, Y. Compressive Strength Modeling of SCC Using Linear Regression and Artificial Neural Network Approach. In Proceedings of the Second International Symposium on Design, Performance and Use of Self-Consolidating Concrete; RILEM Publishing: Beijing, China, 2009; pp. 391–398. [Google Scholar]
- Ramana, N.V.; Harathi, R.; Babu, S.N.; Babu, S.V. Regression Models to Evaluate Compressive Strength of Polyethylene Terephthalate (PET) Fibre Reinforced Recycle Aggregate Concrete. Int. J. Eng. Res. Dev. 2013, 8, 11–16. [Google Scholar]
- Ahmad, Shamsad & Bahraq, Ashraf & Albu Shaqraa, Abbas & Khalid, Hammad & Al-Gadhib, Ali & Maslehuddin, M. (2022). Effects of Key Factors on the Compressive Strength of Metakaolin and Limestone Powder-based Alkali-Activated Concrete Mixtures: An Experimental and Statistical Study. Case Studies in Construction Materials. 16. e00915. 10.1016/j.cscm.2022.e00915. [CrossRef] [Google Scholar]
- Zhang, Lei & Marani, Afshin & Nehdi, Moncef. (2022). Chemistry-informed machine learning prediction of compressive strength for alkali-activated materials. Construction and Building Materials. 316. 1–21. 10.1016/j.conbuildmat.2021.126103. [Google Scholar]
- Kocáb, D., Misák, P., Cikrle, P. Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test. Materials. 2019; 12(17):2705. https://doi.org/10.3390/ma12172705 [CrossRef] [Google Scholar]
- Kharazi, Media & Lye, Leonard & Hussein, A. (2013). Designing and Optimizing of Concrete Mix Proportion Using Statistical Mixture Design Methodology. [Google Scholar]
- Sahoo, Kirtikanta & Sarkar, Pradip & Davis, Robin. (2016). Artificial Neural Networks for Prediction of Compressive Strength of Recycled Aggregate Concrete. International Journal of Research in Chemical, Metallurgical and Civil Engg. 3. 81–85. 10.15242/IJRCMCE.IAE0316414. [Google Scholar]
- Khademi, Faezehossadat & Behfarnia, Kiachehr. (2016). Evaluation of Concrete Compressive Strength using Artificial Neural Network and Multiple Linear Regression Models. International Journal of Optimization in Civil Engineering. 6. 423–432. [Google Scholar]
- Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. Journal of Diagnostic Medical Sonography. 1990;6(1):35–39. DOI: 10.1177/875647939000600106 [CrossRef] [Google Scholar]
- Mahzuz, H.M.A. and Hasan, M.J. (2020) ‘Compressive strength enhancement of concrete using fly ash as a partial replacement of fine aggregate and model development’, Int. J. Materials and Structural Integrity, Vol. 14, No. 1, pp.44–53. [CrossRef] [Google Scholar]
- A. Oner, S. Akyuz, An experimental study on optimum usage of GGBS for the compressive strength of concrete, Cement and Concrete Composites, Volume 29, Issue 6, 2007, Pages 505514, ISSN 0958-9465, https://doi.org/10.1016Zj.cemconcomp.2007.01.001. [CrossRef] [Google Scholar]
- C. Ruiz-Santaquiteria, J. Skibsted, A. Fernández-Jiménez, A. Palomo, Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates, Cement and Concrete Research, Volume 42, Issue 9, 2012, Pages 1242–1251, ISSN 0008-8846, https://doi.org/10.1016/j.cemconres.2012.05.019 [CrossRef] [Google Scholar]
- Chi, M. (2017). Effects of the alkaline solution/binder ratio and curing condition on the mechanical properties of alkali-activated fly ash mortars. Science and Engineering of Composite Materials, 24(5), 773–782. https://doi.org/10.1515/secm-2015-0305 [CrossRef] [Google Scholar]
- Faezehossadat Khademi, Sayed Mohammadmehdi Jamal, Neela Deshpande, Shreenivas Londhe, Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression, International Journal of Sustainable Built Environment, Volume 5, Issue 2, 2016, Pages 355–369, ISSN 2212-6090, https://doi.org/10.1016/j.ijsbe.2016.09.003. [CrossRef] [Google Scholar]
- T.F. Awolusi, O.L. Oke, O.O. Akinkurolere, A.O. Sojobi, Application of response surface methodology: Predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler, Case Studies in Construction Materials, Volume 10, 2019, e00212, ISSN 2214-5095, https://doi.org/10.1016/j.cscm.2018.e00212. [CrossRef] [Google Scholar]
- Jaarsveld, J. & Van Deventer, Jannie & Lukey, G. (2002). The Effect of Composition and Temperature on Properties of Fly Ash and Kaolinite-Based Geopolymers. Chemical Engineering Journal - CHEM ENG J. 89. 63–73. 10.1016/S1385-8947(02)00025-6. [Google Scholar]
- Bakharev, T. (2005). Geopolymeric Materials Prepared Using Class F Fly Ash and Elevated Temperature Curing. Cement and Concrete Research - CEM CONCR RES. 35. 1224–1232. 10.1016/j.cemconres.2004.06.031. [CrossRef] [Google Scholar]
- Perera, D.S., Uchida, O., Vance, E.R. et al. Influence of curing schedule on the integrity of geopolymers. J Mater Sci 42, 3099–3106 (2007). https://doi.org/10.1007/s10853-006-0533-6 [CrossRef] [Google Scholar]
- Yip, Ch & Lukey, G.C. & Van Deventer, Jannie. (2005). The Coexistence of Geopolymeric Gel and Calcium Silicate Hydrate at Early Stage of Alkaline Activation. Cement and Concrete Research. 35. 1688–1697. 10.1016/j.cemconres.2004.10.042. [CrossRef] [Google Scholar]
- Temuujin, Jadambaa & van Riessen, Arie & Williams, Ross. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of hazardous materials. 167. 82–88. 10.1016/j.jhazmat.2008.12.121. [CrossRef] [Google Scholar]
- Lee, N. & Lee, H. (2013). Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials. 47. 12011209. 10.1016/j.conbuildmat.2013.05.107. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.