Open Access
Issue
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
Article Number 03012
Number of page(s) 15
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202447203012
Published online 05 January 2024
  1. Merabet, K. Ahmed, H. Ibrahim, R. Beguenane, and A. Ghias, “Energy management and control system for laboratory scale microgrid based wind-PV-battery,” IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 145–154, 2017 [CrossRef] [Google Scholar]
  2. Ghenai, and I. Janajreh, “Design of Solar-Biomass Hybrid Microgrid System in Sharjah”, Energy Procedia, vol. 103, pp. 357–362, 2016. [CrossRef] [Google Scholar]
  3. Ghenai, and I. Janajreh, Comparison of Resource Intensities and Operational Parameters of Renewable, Fossil Fuel, and Nuclear Power Systems, Int. J. of Thermal & Environmental Engineering, Vol. 5, Issue 2, pp. 95–104, 2013. [Google Scholar]
  4. Chen, X., Zhu, Y., Li, G., & Li, S. (2017). Energy management strategy for grid- connected solar photovoltaic-fuel cell hybrid power system. Journal of Power Sources, 363, 420–430. [Google Scholar]
  5. Alkhateeb, B. Abu Hijleh, E. Rengasamy and S. Muhammed, Building Refurbishment Strategies and Their Impact on Saving Energy in the United Arab Emirates, Proceedings of SBE16 Dubai, 17-19 January 2016, Dubai-UAE [Google Scholar]
  6. Ghenai, C., Salameh, T., & Merabet, A. (2020, April). Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region. International Journal of Hydrogen Energy, 45(20), 11460–11470. https://doi.org/10.1016/j.ijhydene.2018.05.110 [CrossRef] [Google Scholar]
  7. Lan, S. Wena, Y.-Y. Hong, D. C. Yu, and L. Zhang, “Optimal sizing of hybrid PV/diesel/battery in ship power system”, Applied Energy, vol. 158, pp. 26–34, 2015. [CrossRef] [Google Scholar]
  8. Heydari, A., and Askarzadeh, A., Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept, Applied Energy, vol. 165, pp. 601–611, 2016. [CrossRef] [Google Scholar]
  9. R. Sen and S.C. Bhattacharyya, “Off-grid electricity generation with renewable energy technologies in India: An application of HOMER”, Renewable Energy, vol. 62, pp. 388–398, 2014. [CrossRef] [Google Scholar]
  10. Hu, W., Shang, Q., Bian, X., & Zhu, R. (2021, December 29). Energy management strategy of hybrid energy storage system based on fuzzy control for ships. International Journal of Low-Carbon Technologies, 17, 169–175. https://doi.org/10.1093/ijlct/ctab094 [Google Scholar]
  11. International Energy Agency (IEA) Reports: https://www.iea.org/reports [Google Scholar]
  12. International Renewable Energy Agency (IRENA) Reports: https://www.irena.org/reports [Google Scholar]
  13. IPCC Special Report on Global Warming of 1.5°C: https://www.ipcc.ch/sr15/ [Google Scholar]
  14. K. Gan, J.K.H. Shek, and M. A. Mueller, “Hybrid wind-photovoltaic-diesel-battery system sizing tool development using empirical approach, life-cycle cost and performance analysis: A case study in Scotland,” Energy Conversion and Management, vol. 106, pp. 479–494, 2015. [CrossRef] [Google Scholar]
  15. Lai, W., Zhang, N., & Yu, J. (2019). Artificial intelligence-based dynamic power dispatch for grid-connected solar PV-fuel cell hybrid power system. Energies, 12(24), 4716. [CrossRef] [Google Scholar]
  16. Pang, X., Yang, H., Shen, W., & Blaabjerg, F. (2019). Techno-economic analysis and optimization of grid-connected solar photovoltaic-fuel cell hybrid systems. IEEE Transactions on Sustainable Energy, 10(4), 1827–1837. [Google Scholar]
  17. Patel, N., Lu, Y., & Verma, R. (2018). Hydrogen production, storage, and management in solar photovoltaic-fuel cell hybrid systems. International Journal of Hydrogen Energy, 43(29), 13209–13225. [Google Scholar]
  18. Qu, B., Qiao, B., Zhu, Y., Liang, J., & Wang, L. (2017, December 1). Dynamic Power Dispatch Considering Electric Vehicles and Wind Power Using Decomposition Based MultiObjective Evolutionary Algorithm. Energies, 10(12), 1991. https://doi.org/10.3390/en10121991 [Google Scholar]
  19. Yilmaz, H. R. Ozcalikb, M. Aksua, and C. Karapınara, “Dynamic simulation of a PV- diesel-battery hybrid plant for off grid electricity supply,” Energy Procedia, vol. 75, pp. 381–387, 2015. [CrossRef] [Google Scholar]
  20. Lambert, P. Gilman, and P. Lilienthal, “Micropower system modeling with HOMER,” Chap. 15 in Integration of Alternative Sources of Energy, by F. A. Farret and M. G. Simoes, John Wiley & Sons, 2006. [Google Scholar]
  21. United Nations Sustainable Development Goals (SDGs) - Goal 7: Affordable and Clean Energy: https://sdgs.un.org/goals/goal7 [Google Scholar]
  22. Wang, Y., Li, W., Liu, Z., & Li, L. (2023, February 24). An Energy Management Strategy for Hybrid Energy Storage System Based on Reinforcement Learning. World Electric Vehicle Journal, 14(3), 57. https://doi.org/10.3390/wevj14030057 [CrossRef] [Google Scholar]
  23. World Energy Outlook 2020 by the IEA: https://www.iea.org/reports/world-energy-outlook-2020 [Google Scholar]
  24. Zhang, T., Yang, H., Li, Z., & Meng, Y. (2018). Life cycle assessment of grid- connected solar photovoltaic-fuel cell hybrid systems. Energy, 150, 393–403 [Google Scholar]
  25. Zhang, W., Deng, Y., & Qu, J. (2020). Techno-economic optimization of solar photovoltaic-fuel cell hybrid power systems for carbon reduction and energy efficiency improvement. Energy Conversion and Management, 213, 112831. DOI: 10.1016/j.enconman.2020.112831. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.