Open Access
Issue
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
Article Number 03013
Number of page(s) 13
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202447203013
Published online 05 January 2024
  1. Sheykhhasan, M.; Manoochehri, H.; Dama, P. Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: A review study. Cancer Gene Ther. 2022, 29, 1080–1096. [CrossRef] [PubMed] [Google Scholar]
  2. Yang, H.; Zhang, H.; Luan, Y.; Liu, T.; Yang, W.; Roberts, K.G.; Qian, M.X.; Zhang, B.; Yang, W.; Perez-Andreu, V., et al. Noncoding genetic variation in GATA3 increases acute lymphoblastic leukemia risk through local and global changes in chromatin conformation. Nat. Genet. 2022, 54, 170–179. [CrossRef] [PubMed] [Google Scholar]
  3. Sonaal Kant, Pulkit Kumar, Anubha Gupta, Ritu Gupta, et al. Leukonet: Dct-based cnn architecture for the classification of normal versus leukemic blasts in ball cancer. arXiv preprint arXiv:1810.07961, 2018. [Google Scholar]
  4. Anagha, V.; Disha, A.; Aishwarya, B.Y.; Nikkita, R.; Biradar, V.G. Detection of Leukemia Using Convolutional Neural Network. In Emerging Research in Computing, Information, Communication, and Applications; Springer: Singapore, 2021. [Google Scholar]
  5. Gupta, A.; Gupta, R. ALL Challenge Dataset of ISBI 2019 [Data Set]. In The Cancer Imaging Archive; National Cancer Institute: Bethesda, 2019. [Google Scholar]
  6. Shiv Gehlot, Anubha Gupta, and Ritu Gupta, “SDCT-AuxNetíl: DCT Augmented Stain Deconvolutional CNN with Auxiliary Classifier for Cancer Diagnosis,” Medical Image Analysis, Elsevier, vol. 61, pp. 1–15, April 2020. [Google Scholar]
  7. Shubham Goswami, Sunil Mehta, Dhruv Sahrawat, Anubha Gupta and Ritu Gupta, “Heterogeneity Loss to Handle Intersubject and Intrasubject Variability in Cancer”, ICLR workshop on Affordable AI in healthcare, 2020. [Google Scholar]
  8. Sampathila, Niranjana, et al. “Customized deep learning classifier for detection of acute lymphoblastic leukemia using blood smear images.” Healthcare. Vol. 10. No. 10. MDPI, 2022. [Google Scholar]
  9. Ahmed N., Yigit A., Isik Z., Alpkocak A. (2019) Identification of leukemia subtypes from microscopic images using Convolutional Neural Network. MDPI (Diagnostics) 9(3): 104 [Google Scholar]
  10. Ciresan, D.C.; Meier, U.; Masci, J.; Gambardella, L.; Schmidhuber, J. Flexible high performance convolutional neural networks for image classification. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Catalonia, Spain, 16-22 July 2011; Volume 22, p. 1237. [Google Scholar]
  11. Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings of the International Interdisciplinary Ph.D. Workshop (IIPhDW), Swinoujście, Poland, 9-12 May 2018; pp. 117–122. [Google Scholar]
  12. Rustam F., Aslam N., De La Torre Díez I., Khan Y.D., Mazón J.L.V., Rodríguez C.L., Ashraf I., White Blood Cell Classification Using Texture and RGB Features of Oversampled Microscopic Images. Healthcare (Basel). 2022 Nov 8; 10(11). [Google Scholar]
  13. Shafique S., Tehsin S. Computer-Aided Diagnosis of Acute Lymphoblastic Leukemia. Comput Math Methods Med. 2018 Feb 28; 2018: 6125289. [Google Scholar]
  14. Talaat, F.M., Gamel, S.A. Machine learning in detection and classification of leukemia using C- NMC_Leukemia. Multimed Tools Appl (2023). [PubMed] [Google Scholar]
  15. Anita, Yadav A. An Intelligent Model for the Detection of White Blood Cells Using Artificial Intelligence. Comput Methods Programs Biomed. 2021 Feb; 199: 105893. [CrossRef] [Google Scholar]
  16. A Comprehensive Study of Machine Learning Algorithms for Predicting Leukemia Based on Biomedical Data, author: Anamika Das Mou and Pratap Kumar Saha, 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET), the year 2019. [Google Scholar]
  17. L. H. S. Vogado, R. D. M. S. Veras, A. R. Andrade, F. H. D. de Araujo, R. R. V. Silva, and K. R. T. Aires, “Diagnosing Leukemia in Blood Smear Images Using an Ensemble of Classifiers and Pre-Trained Convolutional Neural Networks,” 2017 30th SIBGRAPI Conference on Graphics, Patterns, and Images (SIBGRAPI), Niteroi, Brazil, 2017, pp. 367–373. [CrossRef] [Google Scholar]
  18. B. K., G. A. T., N. G., and S. Umamaheswari, “Improving the Performance of Leukemia Detection using Machine Learning Techniques,” 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2022, pp. 867–872. [Google Scholar]
  19. Alharbi F., Vakanski A. Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review. Bioengineering (Basel). 2023 Jan 28; 10 (2): 173. [CrossRef] [Google Scholar]
  20. Zakir Ullah, M.; Zheng, Y.; Song, J.; Aslam, S.; Xu, C.; Kiazolu, G.D.; Wang, L. An AttentionBased Convolutional Neural Network for Acute Lymphoblastic Leukemia Classification. Appl. Sci. 2021, 11, 10662. [Google Scholar]
  21. Rupapara V., Rustam F., Aljedaani W., Shahzad H.F., Lee E., Ashraf I., Blood cancer prediction using leukemia microarray gene data and hybrid logistic vector trees model. Sci Rep. 2022 Jan 19; 12 (1): 1000. [CrossRef] [Google Scholar]
  22. P. K. Das, D. V. A., S. Meher, R. Panda, and A. Abraham, “A Systematic Review on Recent Advancements in Deep and Machine Learning Based Detection and Classification of Acute Lymphoblastic Leukemia,” in IEEE Access, vol. 10, pp. 81741–81763, 2022. [CrossRef] [Google Scholar]
  23. Pan, Y.; Liu, M.; Xia, Y.; Shen, D. Neighborhood-Correction Algorithm for Classification of Normal and Malignant Cells. In ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging; Springer: Singapore, 2019; pp. 73–82. [Google Scholar]
  24. Marzahl, C.; Aubreville, M.; Voigt, J.; Maier, A. Classification of Leukemic B-Lymphoblast Cells from Blood Smear Microscopic Images with an Attention-Based Deep Learning Method and Advanced Augmentation Techniques. In ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging; Springer: Singapore, 2019; pp. 13–22. [Google Scholar]
  25. Sampathila, N.; Chadaga, K.; Goswami, N.; Chadaga, R.P.; Pandya, M.; Prabhu, S.; Bairy, M.G.; Katta, S.S.; Bhat, D.; Upadya, S.P. Customized Deep Learning Classifier for Detection of Acute Lymphoblastic Leukemia Using Blood Smear Images. Healthcare 2022, 10, 1812. [CrossRef] [PubMed] [Google Scholar]
  26. Maurício de Oliveira J., Dantas D. (2021) Classification of normal versus leukemic cells with data augmentation and convolutional neural networks. In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - vol. 4: VISAPP, pp. 685–692. [CrossRef] [Google Scholar]
  27. Prellberg J., Kramer O. (2020) Acute lymphoblastic leukemia classification from microscopic images using convolutional neural networks, arXiv:1906.09020v2 [cs.CV] 1 Apr 2020. [Google Scholar]
  28. Chen Y.M., Chou F.I., Ho W.H., Tsai J.T. Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method. BMC Bioinformatics. 2022 Jan 11; 22(Suppl 5):615. [Google Scholar]
  29. Khan, Mohammad Azam & Choo, Jaegul. (2019). Classification of Cancer Microscopic Images via Convolutional Neural Networks. DOI: 10.1007/978-981-15-0798-4_15. [Google Scholar]
  30. Y. Liu and F. Long, Acute lymphoblastic leukemia cells image analysis with deep bagging ensemble learning, bioRxiv, 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.