Open Access
Issue
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
Article Number 03011
Number of page(s) 11
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202447203011
Published online 05 January 2024
  1. Zhang, B. G., Myers, D. E., Wallace, G. G., Brandt, M., & Choong, P. F. (2014). Bioactive coatings for orthopaedic implants— recent trends in development of implant coatings. International journal of molecular sciences, 15(7), 11878–11921. [CrossRef] [PubMed] [Google Scholar]
  2. Kravanja, K. A., & Finšgar, M. (2021). Analytical techniques for the characterization of bioactive coatings for orthopaedic implants. Biomedicines, 9(12), 1936. [CrossRef] [PubMed] [Google Scholar]
  3. Kolobov, Y. R. (2009). Nanotechnologies for the formation of medical implants based on titanium alloys with bioactive coatings. Nanotechnologies in Russia, 4, 758–775. [CrossRef] [Google Scholar]
  4. Kravanja, K. A., & Finšgar, M. (2022). A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients. Materials & Design, 217, 110653. [CrossRef] [Google Scholar]
  5. Basavapoornima, C., Kesavulu, C. R., Maheswari, T., Pecharapa, W., Depuru, S. R., & Jayasankar, C. K. (2020). Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 228, 117585. [CrossRef] [Google Scholar]
  6. Saxena, K. K., & Lal, A. (2012). Comparative Molecular Dynamics simulation study of mechanical properties of carbon nanotubes with number of stone-wales and vacancy defects. Procedia Engineering, 38, 2347–2355. [CrossRef] [Google Scholar]
  7. Rabiei, A., & Sandukas, S. (2013). Processing and evaluation of bioactive coatings on polymeric implants. Journal of biomedical materials research Part A., 101(9), 2621–2629. [CrossRef] [Google Scholar]
  8. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017, August). Design and implementation of vehicle navigation system in urban environments using internet of things (IoT). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [CrossRef] [Google Scholar]
  9. Kumari, C. U., Murthy, A. S. D., Prasanna, B. L., Reddy, M. P. P., & Panigrahy, A. K. (2021). An automated detection of heart arrhythmias using machine learning technique: SVM. Materials Today: Proceedings, 45, 1393–1398. [CrossRef] [Google Scholar]
  10. Saxena, K. K., Srivastava, V., & Sharma, K. (2012). Calculation of Fundamental Mechanical Properties of Single Walled Carbon Nanotube using Non-local Elasticity. Advanced Materials Research, 383, 3840–3844. [Google Scholar]
  11. Tripathi, G. P., Agarwal, S., Awasthi, A., & Arun, V. (2022, August). Artificial Hip Prostheses Design and Its Evaluation by Using Ansys Under Static Loading Condition. In Biennial International Conference on Future Learning Aspects of Mechanical Engineering (pp. 815–828). Singapore: Springer Nature Singapore. [Google Scholar]
  12. Körtvélyessy, G., Tarjányi, T., Baráth, Z. L., Minarovits, J., & Tóth, Z. (2021). Bioactive coatings for dental implants: A review of alternative strategies to prevent peri-implantitis induced by anaerobic bacteria. Anaerobe, 70, 102404. [CrossRef] [PubMed] [Google Scholar]
  13. Reddy, K. S. P., Roopa, Y. M., Ln, K. R., & Nandan, N. S. (2020, July). IoT based smart agriculture using machine learning. In 2020 Second international conference on inventive research in computing applications (ICIRCA) (pp. 130–134). IEEE [Google Scholar]
  14. Agrawal, R., Singh, S., Saxena, K. K., & Buddhi, D. (2023). A role of biomaterials in tissue engineering and drug encapsulation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089221150740. [Google Scholar]
  15. Arun, V., Shukla, N. K., Singh, A. K., & Upadhyay, K. K. (2015, September). Design of all optical line selector based on SOA for data communication. In Proceedings of the Sixth International Conference on Computer and Communication Technology 2015 (pp. 281–285). [Google Scholar]
  16. Sudhir Sastry, Y. B., Krishna, Y., & Budarapu, P. R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416–424. [CrossRef] [Google Scholar]
  17. Ramadugu, S., Ledella, S. R. K., Gaduturi, J. N. J., Pinninti, R. R., Sriram, V., & Saxena, K. K. (2023). Environmental life cycle assessment of an automobile component fabricated by additive and conventional manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–12. [Google Scholar]
  18. Fritsche, A., Haenle, M., Zietz, C., Mittelmeier, W., Neumann, H. G., Heidenau, F., & Bader, R. (2009). Mechanical characterization of anti-infectious, anti-allergic, and bioactive coatings on orthopedic implant surfaces. Journal of materials science, 44, 5544–5551. [CrossRef] [Google Scholar]
  19. Lahann, J., Höcker, H., & Langer, R. (2001). Synthesis of amino [2.2] paracyclophanes— beneficial monomers for bioactive coating of medical implant materials. AngewandteChemie International Edition, 40(4), 726–728. [CrossRef] [Google Scholar]
  20. Victoria Cabanas, M. (2014). Bioceramic coatings for medical implants. Bio-Ceramics with Clinical Applications, 249–289. [CrossRef] [Google Scholar]
  21. Ajith, J. B., Manimegalai, R., & Ilayaraja, V. (2020, February). An IoT based smart water quality monitoring system using cloud. In 2020 International conference on emerging trends in information technology and engineering (ic-ETITE) (pp. 1–7). IEEE. [Google Scholar]
  22. Swapna Sri, M. N., Anusha, P., Madhav, V. V., Saxena, K. K., Chaitanya, C. S., Haranath, R., & Singh, B. (2023). Influence of Cu particulates on a356mmc using frequency response function and damping ratio. Advances in Materials and Processing Technologies, 1–9. [CrossRef] [Google Scholar]
  23. Kazmierska, K. A., & Ciach, T. (2009). Bioactive coatings for minimally invasive medical devices: Surface modification in the service of medicine. Recent Patents on Biomedical Engineering (Discontinued), 2(1), 1–14. [CrossRef] [Google Scholar]
  24. Joy-Anne, N. O., Su, Y., Lu, X., Kuo, P. H., Du, J., & Zhu, D. (2019). Bioactive glass coatings on metallic implants for biomedical applications. Bioactive materials, 4, 261–270. [CrossRef] [PubMed] [Google Scholar]
  25. Telagam, N., Kandasamy, N., & Nanjundan, M. (2017). Smart sensor network based high quality air pollution monitoring system using labview. International Journal of Online Engineering (iJOE), 13(08), 79–87. [CrossRef] [Google Scholar]
  26. Arora, G. S., & Saxena, K. K. (2023). A review study on the influence of hybridization on mechanical behaviour of hybrid Mg matrix composites through powder metallurgy. Materials Today: Proceedings. [Google Scholar]
  27. Hildebrand, H. F., Blanchemain, N., Mayer, G., Chai, F., Lefebvre, M., & Boschin, F. (2006). Surface coatings for biological activation and functionalization of medical devices. Surface and Coatings Technology, 200(22-23), 6318–6324. [CrossRef] [Google Scholar]
  28. Massia, S. P., Holecko, M. M., & Ehteshami, G. R. (2004). In vitro assessment of bioactive coatings for neural implant applications. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 68(1), 177–186. [Google Scholar]
  29. Awasthi, A., Saxena, K. K., & Arun, V. (2020). Sustainability and survivability in manufacturing sector. In Modern Manufacturing Processes (pp. 205–219). Woodhead Publishing. [CrossRef] [Google Scholar]
  30. Babu, N. R., Manwatkar, S., Rao, K. P., & Kumar, T. S. (2004). Bioactive coatings on 316L stainless steel implants. Trends Biomater. Artif. Organs, 17(2), 43–47. [Google Scholar]
  31. Korpi, A. G., Ţălu, Ş., Bramowicz, M., Arman, A., Kulesza, S., Pszczolkowski, B., & Gopikishan, S. (2019). Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8), 086463. [CrossRef] [Google Scholar]
  32. Singh, B., Saxena, K. K., Dagwa, I. M., Singhal, P., & Malik, V. (2023). Optimization Of Machining Characteristics of Titanium-Based Biomaterials: Approach to Optimize Surface Integrity for Implants Applications. Surface Review and Letters, 2340008. [CrossRef] [Google Scholar]
  33. Arun, V., Singh, A. K., Shukla, N. K., & Tripathi, D. K. (2016). Design and performance analysis of SOA-MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuit. Optical and quantum electronics, 48, 1–15. [CrossRef] [Google Scholar]
  34. Brunello, G., Elsayed, H., & Biasetto, L. (2019). Bioactive glass and silicate-based ceramic coatings on metallic implants: open challenge or outdated topic?. Materials, 12(18), 2929. [CrossRef] [PubMed] [Google Scholar]
  35. Lopez-Esteban, S., Saiz, E., Fujino, S., Oku, T., Suganuma, K., & Tomsia, A. P. (2003). Bioactive glass coatings for orthopedic metallic implants. Journal of the European Ceramic Society, 23(15), 2921–2930. [CrossRef] [Google Scholar]
  36. Gupta, T. K., Budarapu, P. R., Chappidi, S. R., Yb, S. S., Paggi, M., & Bordas, S. P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  37. Awasthi, A., Saxena, K. K., Dwivedi, R. K., Buddhi, D., & Mohammed, K. A. (2022). Design and analysis of ECAP Processing for Al6061 Alloy: a microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–13. [Google Scholar]
  38. Choy, K. L., Schnabelrauch, M., & Wyrwa, R. (2018). Bioactive coatings. Biomaterials in clinical practice: advances in clinical research and medical devices, 361–406. [CrossRef] [Google Scholar]
  39. Hou, N. Y., Perinpanayagam, H., Mozumder, M. S., & Zhu, J. (2015). Novel development of biocompatible coatings for bone implants. Coatings, 5(4), 737–757. [CrossRef] [Google Scholar]
  40. Balguri, P. K., Samuel, D. H., & Thumu, U. (2021). A review on mechanical properties of epoxy nanocomposites. Materials Today: Proceedings, 44, 346–355. [CrossRef] [Google Scholar]
  41. Awasthi, A., Saxena, K. K., & Arun, V. (2021). Sustainable and smart metal forming manufacturing process. Materials Today: Proceedings, 44, 2069–2079. [CrossRef] [Google Scholar]
  42. Amirtharaj Mosas, K. K., Chandrasekar, A. R., Dasan, A., Pakseresht, A., & Galusek, D. (2022). Recent advancements in materials and coatings for biomedical implants. Gels, 8(5), 323. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.