Open Access
Issue |
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 11 | |
Section | Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/202447203014 | |
Published online | 05 January 2024 |
- Landauer, R.: Irreversibility and heat generation in the computing process. IBM journal of research and development, 5 (3), 183–191 (1961). [CrossRef] [Google Scholar]
- Cho, H., & Swartzlander, E. E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Transactions on Computers, 58 (6), 721–727 (2009). [CrossRef] [Google Scholar]
- Zhang, R., Walus, K., Wang, W., & Jullien, G. A.: A method of majority logic reduction for quantum cellular automata. IEEE Transactions on Nanotechnology, 3 (4), 443–450 (2004) [CrossRef] [Google Scholar]
- Hänninen, I., & Takala, J.: Binary adders on quantum-dot cellular automata. Journal of Signal Processing Systems, 58 (1), 87–103 (2010) [CrossRef] [Google Scholar]
- Kummamuru, R. K., Orlov, A. O., Ramasubramaniam, R., Lent, C. S., Bernstein, G. H., & Snider, G. L.: Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Transactions on Electron Devices, 50 (9), 1906–1913 (2003) [CrossRef] [Google Scholar]
- Walus, K., Jullien, G. A., & Dimitrov, V. S.: Computer arithmetic structures for quantum cellular automata. In Conference on Record of the Thirty- Seventh Asilomar, Signals, Systems and Computers, Vol. 2, pp. 1435–1439 (2003) [Google Scholar]
- Walus, K., Dysart, T. J., Jullien, G. A., & Budiman, R. A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. Transactions on Nanotechnology, IEEE 3 (1), 26–31 (2004). [CrossRef] [Google Scholar]
- Lent, C. S., & Tougaw, P. D.: Lines of interacting quantum-dot cells: A binary wire. Journal of Applied Physics, 74 (10), 6227–6233 (1993). [CrossRef] [Google Scholar]
- Tougaw, P. D., & Lent, C. S.: Logical devices implemented using quantum cellular automata. Journal of Applied physics, 75 (3), 1818–1825 (1994). [CrossRef] [Google Scholar]
- Ahmad, F., Bhat, G. M., & Ahmad, P. Z.: Novel Adder Circuits Based On Quantum-Dot Cellular Automata (QCA). Circuits and Systems, (2014). [Google Scholar]
- Garipelly, R., Kiran, P. M., & Kumar, A. S.: A Review on Reversible Logic Gates and their Implementation. International Journal of Emerging Technology and Advanced Engineering, Volume 3, (2013). [Google Scholar]
- Haghparast, M., Jassbi, S. J., Navi, K., & Hashemipour, O.: Design of a novel reversible multiplier circuit using HNG gate in nanotechnology. In World Appl. Sci. J. (2008) [Google Scholar]
- Thapliyal, H., & Srinivas, M. B.: Novel reversible multiplier architecture using reversible TSG gate. (2006) [Google Scholar]
- Bruce, J. W., Thornton, M. A., Shivakumaraiah, L., Kokate, P. S., & Li, X.: Efficient adder circuits based on a conservative reversible logic gate. In VLSI, 2002. Proceedings. Annual Symposium on IEEE Computer Society Annual Symposium, pp. 74–79, (2002) [Google Scholar]
- Mohammad Abdullah-Al-Shafi, Md Shifatul Islam and Ali Newaz Bahar. Article: A Review on Reversible Logic Gates and its QCA Implementation. International Journal of Computer Applications 128(2):27–34(2015) [CrossRef] [Google Scholar]
- Das, J., Purkayastha, T. and De, D.: Reversible nanorouter using QCA for nanocommunication. Nanomaterials and Energy, Vol. 5 No. 1, pp. 28–42(2016). [CrossRef] [Google Scholar]
- Bibhash, S., Dutta, M., Goswami, M. and Sikdar, B.K.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectronics Journal, Vol. 45 No. 11, pp. 1522–1532, DOI: 10.1016/j. mejo.2014.08.012 (2014). [CrossRef] [Google Scholar]
- Das, J., Purkayastha, T. and De, D.: Reversible nano- router using QCA for nanocommunication. Nanomaterials and Energy, Vol. 5 No. 1, pp. 28–42, DOI: 10.1680/jnaen.15.00012 (2016). [CrossRef] [Google Scholar]
- Kasilingam, K. and Balaiah, P.: A novel design of nano router with high-speed crossbar scheduler for digital systems in QCA paradigm”, Circuit World, Vol. 48 No. 4, pp. 464–478 (2022). [CrossRef] [Google Scholar]
- K. Kalpana, B. Paulchamy, S. Chinnapparaj, K. Mahendrakan and A. AbdulHayum.: A Novel design of Nano scale TIEO based single layer full adder and full subractor in QCA paradigm. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), 2021, pp. 575–582(2021). [Google Scholar]
- A. Vetteth, K. Walus, V.S. Dimitrov, G.A. Jullien.: Quantum-Dot Cellular Automata of Flip-Flops. ATIPS Laboratory 2500 University Drive, N.W., Calgary, Alberta, Canada T2N 1N4 (2003). [Google Scholar]
- X. Yang, L. Cai, X. Zhao.: Low power dual-edge triggered flip-flop structure in quantum dot cellular automata. Electron. Lett. 46, 825–626 (2010). [CrossRef] [Google Scholar]
- J.C. Das, D. De.: Novel design of reversible priority encoder in quantum dot cellular automata based on Toffoli gate and Feynman gate. The Journal of Supercomputing (2019). [PubMed] [Google Scholar]
- N. Safoev, G. Abdukhalil and K. A. Abdisalomovich.: QCA based Priority Encoder using Toffoli gate. 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT), Tashkent, Uzbekistan, pp. 1–4 (2020). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.