Open Access
Issue
E3S Web Conf.
Volume 582, 2024
1st International Conference on Materials Sciences and Mechatronics for Sustainable Energy and the Environment (MSMS2E 2024)
Article Number 02002
Number of page(s) 9
Section Materials Sciences in Energy
DOI https://doi.org/10.1051/e3sconf/202458202002
Published online 22 October 2024
  1. S. R. Routray, T. R. Lenka, InGaN-based solar cells: a wide solar spectrum harvesting technology for twenty-first century. CSI Trans. ICT 6, 83–96 (2017). https://doi.org/10.1007/S40012-017-0181-9. [Google Scholar]
  2. A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, K. Sugita, InGaN solar cells: present state of the art and important challenges. IEEE J. Photovolt. 2, 276–293 (2012). https://doi.org/10.1109/JPHOTOV.2012.2193384. [CrossRef] [Google Scholar]
  3. I. Vurgaftman, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675–3696 (2003). https://doi.org/10.1063/1.1600519. [CrossRef] [Google Scholar]
  4. O. Ambacher, Growth and applications of group III-nitrides. J. Phys. D Appl. Phys. 31, 2653–2710 (1998). https://doi.org/10.1088/0022-3727/31/20/001. [CrossRef] [Google Scholar]
  5. D. A. Neumayer, J. G. Ekerdt, Growth of group III nitrides: a review of precursors and techniques. ChemInform 27, 17 (1996). https://doi.org/10.1002/CHIN.199617319. [CrossRef] [Google Scholar]
  6. W. Chen, Y. Wu, C. Peng, C. Hsiao, L. Chang, Effect of In/Al ratios on structural and optical properties of InAlN films grown on Si(100) by RF-MOMBE. Nanoscale Res. Lett. 9, 204 (2014). https://doi.org/10.1186/1556-276X-9-204. [CrossRef] [Google Scholar]
  7. C. Hums, J. Bläsing, A. Dadgar, A. Diez, Metal-organic vapor phase epitaxy and properties of AlInN in the whole compositional range. J. Appl. Phys. 90, 2 (2007). https://doi.org/10.1063/1.2424649. [Google Scholar]
  8. R. Blasco, F. B. Naranjo, S. Valdueza-Felip, Design of AlInN on silicon heterojunctions grown by sputtering for solar devices. Curr. Appl. Phys. 20, 1244–1252 (2020). https://doi.org/10.1016/J.CAP.2020.07.018. [CrossRef] [Google Scholar]
  9. C. J. Dong et al., Growth of well-oriented AlxIn1−xN films by sputtering at low temperature. J. Alloys Compd. 479, 812–815 (2009). https://doi.org/10.1016/J.JALLCOM.2009.01.075. [CrossRef] [Google Scholar]
  10. H. Liu, C. Tan, G. Dalapati, Magnetron-sputter deposition of high-indium-content nAlInN thin film on p-Si (001) substrate for photovoltaic applications. J. Appl. Phys. 112, 6 (2012). https://doi.org/10.1063/1.4754319. [Google Scholar]
  11. M. Florescu et al., Improving solar cell efficiency using photonic band-gap materials. Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007). https://doi.org/10.1016/j.solmat.2007.05.001. [CrossRef] [Google Scholar]
  12. G. Conibeer, Third-generation photovoltaics. Mater. Today 10, 42–50 (2007). https://doi.org/10.1016/S1369-7021(07)70278-X. [CrossRef] [Google Scholar]
  13. A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, B. S. Richards, Physical performance limitations of luminescent down-conversion layers for photovoltaic applications. Sol. Energy Mater. Sol. Cells 122, 8–14 (2014). https://doi.org/10.1016/J.SOLMAT.2013.11.005. [CrossRef] [Google Scholar]
  14. H. Shpaisman, O. Niitsoo, I. Lubomirsky, D. Cahen, Can upand down-conversion and multi-exciton generation improve photovoltaics? Sol. Energy Mater. Sol. Cells 92, 1541–1546 (2008). https://doi.org/10.1016/J.SOLMAT.2008.08.006. [CrossRef] [Google Scholar]
  15. L. Oulmaati et al., Improving solar cell performance with high-efficiency infrared quantum cutting in Tb3+/Yb3+ codoped silica hafnia glass and glass-ceramic thin films. Appl. Sci. 13, 169390 (2023). https://doi.org/10.3390/app13169390. [CrossRef] [Google Scholar]
  16. M. Sun et al., Comparison of the material quality of AlxIn1−xN (x = 0–0.50) films deposited on Si(100) and Si(111) at low temperature by reactive RF sputtering. Materials 15, 20 (2022). https://doi.org/10.3390/MA15207373. [Google Scholar]
  17. R. Blasco et al., Influence of the AlInN thickness on the photovoltaic characteristics of AlInN on Si solar cells deposited by RF sputtering. Phys. Status Solidi A 216, 1 (2019). https://doi.org/10.1002/PSSA.201800494. [Google Scholar]
  18. R. Blasco, S. Valdueza-Felip, D. Montero, M. Sun, J. Olea, Low-to-mid Al content (x = 0–0.56) AlxIn1−xN layers deposited on Si(100) by radio-frequency sputtering. Phys. Status Solidi B 257, 4 (2020). https://doi.org/10.1002/PSSB.201900575. [CrossRef] [Google Scholar]
  19. R. B. Chicano, Development of solar cells based on AlInN/Si heterojunctions growth by RF-sputtering. (2020). Accessed: Sep. 20, 2024. Available: https://portalcientifico.universidadeuropea.com/documentos/5fb478062999525258e8cfa9. [Google Scholar]
  20. J. De Anda, F. Enrichi, G. C. Righini, C. Falcony, Ultraviolet to near infrared downconversion in CaF2 +/Yb3+/Li+ phosphors. J. Lumin. 238, 118241 (2021). https://doi.org/10.1016/J.JLUMIN.2021.118241. [CrossRef] [Google Scholar]
  21. A. Shalav, B. S. Richards, M. A. Green, Luminescent layers for enhanced silicon solar cell performance: up-conversion. Sol. Energy Mater. Sol. Cells 91, 829–842 (2007). https://doi.org/10.1016/J.SOLMAT.2007.02.007. [CrossRef] [Google Scholar]
  22. W. Van Sark, A. Meijerink, R. E. I. Schropp, Nanoparticles for solar spectrum conversion. Nanotechnol. Photovoltaics 7772, 777206 (2010). https://doi.org/10.1117/12.862974. [Google Scholar]
  23. G. A. Goget et al., Frequency converter layers based on terbium and ytterbium activated HfO glass-ceramics. Photonics Sol. Energy Syst. III 7725, 77250W (2010). https://doi.org/10.1117/12.855025. [Google Scholar]
  24. L. Zur et al., Comparison between glass and glass-ceramic silica-hafnia matrices on the down-conversion efficiency of Tb3+/Yb3+ rare earth ions. Opt. Mater. 87, 102–106 (2019). https://doi.org/10.1016/J.OPTMAT.2018.05.008. [CrossRef] [Google Scholar]
  25. S. El Amrani et al., Effect of temperature and excitation power on down-conversion process in Tb3+/Yb3+-activated silica-hafnia glass-ceramic films. Ceram. Int. (2024). https://doi.org/10.1016/J.CERAMINT.2024.06.392. [Google Scholar]
  26. A. Bouajaj et al., Tb3+/Yb3+ codoped silica-hafnia glass and glass-ceramic waveguides to improve the efficiency of photovoltaic solar cells. Opt. Mater. 52, 62–68 (2016). https://doi.org/10.1016/j.optmat.2015.12.013. [CrossRef] [Google Scholar]
  27. L. Oulmaati et al., Comparison of energy transfer between Terbium and Ytterbium ions in glass and glass ceramic: application in photovoltaic. Solar Energy Advances 2, 100012 (2022). https://doi.org/10.1016/J.SEJA.2021.100012. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.