Open Access
Issue
E3S Web Conf.
Volume 583, 2024
Innovative Technologies for Environmental Science and Energetics (ITESE-2024)
Article Number 07013
Number of page(s) 8
Section Smart Electricity Grids, Electricity and Magnetism
DOI https://doi.org/10.1051/e3sconf/202458307013
Published online 25 October 2024
  1. Matasov A.I. Metod garantiruyushchego ocenivaniya//Izdatel’stvo Moskovskogo universiteta, 2009 g., 104 s. [Google Scholar]
  2. Akimov P.A., Matasov A.I. Metod garantiruyushchego ocenivaniya pri kalibrovke bloka giroskopov//ZHurnal Avtomatika i telemekhanika, № 7, 2023 g., s. 41-65 DOI: 10.31857/S0005231023070036, EDN: FCNJCE [Google Scholar]
  3. Golovan A.A., Matasov A.I. Primenenie garantiruyushchego podhoda k zadache kalibrovki bloka n’yutonometrov. // ZHurnal Avtomatika i telemekhanika, № 4, 2020 g., s. 140-160 DOI : 10.31857/S0005231020040108 [Google Scholar]
  4. Matasov A.I., “Variational problems for calibrating an accelerometer unit”, Autom. Remote 6. Control, 80:12 (2019), 2135–2151 [CrossRef] [Google Scholar]
  5. Akimov P. A., Matasov A. I., “Estimating errors in pins inertial sensor readings with I 1-approximation”, Autom. Remote Control, 72:2 (2011), 225–239 [CrossRef] [Google Scholar]
  6. Matasov. A. I., “Variational problems for calibrating an accelerometer unit”, Autom. Remote Control, 80:12 (2019), 2135–2151 [CrossRef] [Google Scholar]
  7. Osipenko K.YU. Nailuchshee priblizhenie analiticheskih funkcij po informacii ob ih znacheniyah v konechnom chisle tochek//Matematicheskie zametki. 1976. T. 19. № 1. S. 29-40 [Google Scholar]
  8. Osipenko K.YU., Stesin M.I. O zadachah vosstanovleniya v prostranstvah Hardi i Bergmana, Matem. zametki, 1991, tom 49, vypusk 4, 95-104. [Google Scholar]
  9. Osipenko K. Yu., “Optimal recovery in weighted spaces with homogeneous weights”, Sb. Math., 213:3 (2022), 385–411 [CrossRef] [Google Scholar]
  10. Arutyunov A. V., Osipenko K. Yu., “Recovering linear operators and Lagrange function minimality condition”, Siberian Math. J., 59:1 (2018), 11–21 [CrossRef] [Google Scholar]
  11. Osipenko K.Yu.. “On the construction of families of optimal recovery methods for liner operators”. Izv. Math., 88:1 (2024), 92-113 [CrossRef] [Google Scholar]
  12. Akopyan R.R. «Analog teoremy o dvuh konstantah i optimal’noe vosstanovlenie analiticheskih funkcij», Matem. sb., 210:10 (2019), DOI: 10.4213/sm8952 [Google Scholar]
  13. Akopyan R.R. «Optimal’noe vosstanovlenie analiticheskoj funkcii po zadannym s pogreshnost’yu granichnym znacheniem» Matem. zametki, 99(2) (2016), 163-170. DOI: 10.4213/mzm10741 [CrossRef] [Google Scholar]
  14. Akopyan R.R., «Optimal’noe vosstanovlenie analiticheskih v poluploskosti funkcij», Tr. IMM URO RAN, 13, № 2, 2007, 3-12. DOI: 10.1134/s0081543807060016 [Google Scholar]
  15. Akopyan R. R., “Optimal Recovery of a Derivative of an Analytic Function from Values of the Function Given with an Error on a Part of the Boundary. II”, Analysis Math., 46:3 (2020), 409–424 [CrossRef] [Google Scholar]
  16. Magaril-Il’yaev G.G., Osipenko K.YU. O nailuchshih metodah vosstanovleniya proizvodnyh na sobolevskih klassah. Izv. RAN. Ser. matem., 2014, tom 78: 6, 83-102. DOI: 10.4213/im8182 [CrossRef] [Google Scholar]
  17. Magaril-Il’yaev G. G., Osipenko K. Yu.,. Sivkova E. O, “Optimal Recovery of Pipe Temperature from Inaccurate Measurements”, Proc. Steklov Inst. Math., 312 (2021), 207–214 [CrossRef] [Google Scholar]
  18. Abramova E. V., Magaril-Il’yaev G. G., Sivkova E. O., “Best recovery of the solution of the Dirichlet problem in a half-space from inaccurate data”, Comput. Math. Math. Phys., 60:10 (2020), 1656–1665 [CrossRef] [Google Scholar]
  19. Ovchincev M.P., Gusakova E.M. Vychislenie koefficientov linejnogo nailuchshego metoda vosstanovleniya ogranichennyh analiticheskih funkcij v kruge//Vestnik MGSU. 2014. № 4, S. 44-50. [CrossRef] [Google Scholar]
  20. Ovchintsev M.P., «Optimal recovery of derivatives of Hardy class functions», E3S Web of Conferences, 110, 01043 (2019). DOI: https://doi.org/10.1051/e3sconf/201911001043 [CrossRef] [EDP Sciences] [Google Scholar]
  21. Ovchintsev M.P., «Linear best method for recovering the second derivatives of Hardy class functions», E3S Web of Conferences, 164, 02013 (2020). DOI: https://doi.org/10.1051/e3sconf/202016402013 [CrossRef] [EDP Sciences] [Google Scholar]
  22. Havinson S.YA. Osnovy teorii ekstremal’nyh zadach dlya ogranichennyh analiticheskih funkcij i ih razlichnye obobshcheniya. - M.: MISI im. V.V. Kujbysheva, 1981 g., - 92 s. [Google Scholar]
  23. Kusis P. Vvedenie v teoriyu prostranstv H^p. – Moskva «Mir», 1984 [Google Scholar]
  24. Ovchincev M.P. K voprosu ob optimal’nom vosstanovlenii ogranichennoj analiticheskoj funkcii//Nauchno-tekhnicheskij vestnik Povolzh’ya, № 10, 2023 g. S. 246-250 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.