Open Access
Issue |
E3S Web Conf.
Volume 588, 2024
Euro-Asian Conference on Sustainable Nanotechnology, Environment, & Energy (SNE2-2024)
|
|
---|---|---|
Article Number | 02014 | |
Number of page(s) | 18 | |
Section | Nanomaterials in Environment and Energy | |
DOI | https://doi.org/10.1051/e3sconf/202458802014 | |
Published online | 08 November 2024 |
- S. Noreen et al., “Structural, mechanical, thermodynamic, electronic, magnetic and optical properties of ZnFe2O4 ferrite: A DFT study,” Optical Materials, vol. 133, p. 112930, Nov. 2022, doi: 10.1016/j.optmat.2022.112930. [CrossRef] [Google Scholar]
- M. Hofmann, S. J. Campbell, H. Ehrhardt, and R. Feyerherm, “The magnetic behaviour of nanostructured zinc ferrite,” Journal of Materials Science, vol. 39, no. 16, pp. 5057–5065, Aug. 2004, doi: 10.1023/B:JMSC.0000039185.80910.59. [CrossRef] [Google Scholar]
- Z. Ž. Lazarević et al., “Study of NiFe2O4 and ZnFe2O4 Spinel Ferrites Prepared by Soft Mechanochemical Synthesis,” Ferroelectrics, vol. 448, no. 1, pp. 1–11, Jan. 2013, doi: 10.1080/00150193.2013.822257. [CrossRef] [Google Scholar]
- P. A. Vinosha, L. A. Mely, J. E. Jeronsia, S. Krishnan, and S. J. Das, “Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co- precipitation route,” Optik, vol. 134, pp. 99–108, Apr. 2017, doi: 10.1016/j.ijleo.2017.01.018. [CrossRef] [Google Scholar]
- A. Pradeep, P. Priyadharsini, and G. Chandrasekaran, “Structural, magnetic and electrical properties of nanocrystalline zinc ferrite,” Journal of Alloys and Compounds, vol. 509, no. 9, pp. 3917–3923, Mar. 2011, doi: 10.1016/j.jallcom.2010.12.168. [CrossRef] [Google Scholar]
- S. M. Hoque, Md. S. Hossain, S. Choudhury, S. Akhter, and F. Hyder, “Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications,” Materials Letters, vol. 162, pp. 60–63, Jan. 2016, doi: 10.1016/j.matlet.2015.09.066. [CrossRef] [PubMed] [Google Scholar]
- O. M. Lemine et al., “Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4,” Physica B: Condensed Matter, vol. 406, no. 10, pp. 1989–1994, May 2011, doi: 10.1016/j.physb.2011.02.072. [CrossRef] [Google Scholar]
- C. Yao et al., “ZnFe2O4 Nanocrystals: Synthesis and Magnetic Properties,” J. Phys. Chem. C, vol. 111, no. 33, pp. 12274–12278, Aug. 2007, doi: 10.1021/jp0732763. [CrossRef] [Google Scholar]
- S. Sharma, D. Kumar, S. Kumar, M. S. Goyat, and P. Mandal, “Structural and optical properties of Cu incorporated ZnFe2O4 ferrite nanoparticles prepared by wet chemical route,” Materials Chemistry and Physics, vol. 212, pp. 292–297, Jun. 2018, doi: 10.1016/j.matchemphys.2018.03.051. [CrossRef] [Google Scholar]
- M. K. Lima-Tenório, E. T. Tenório-Neto, A. A. W. Hechenleitner, H. Fessi, and E. A. G. Pineda, “CoFe2O4 and ZnFe2O4 nanoparticles: an overview about structure, properties, synthesis and biomedical applications,” Journal of Colloid Science and Biotechnology, vol. 5, no. 1, pp. 45–54, 2016. [CrossRef] [Google Scholar]
- M. A. Cobos, P. de la Presa, I. Llorente, A. García-Escorial, A. Hernando, and J. A. Jiménez, “Effect of preparation methods on magnetic properties of stoichiometric zinc ferrite,” Journal of Alloys and Compounds, vol. 849, p. 156353, Dec. 2020, doi: 10.1016/j.jallcom.2020.156353. [CrossRef] [Google Scholar]
- Md. S. Hossain, S. M. Hoque, S. I. Liba, and S. Choudhury, “Effect of synthesis methods and a comparative study of structural and magnetic properties of zinc ferrite,” AIP Advances, vol. 7, no. 10, p. 105321, Oct. 2017, doi: 10.1063/1.5009925. [CrossRef] [Google Scholar]
- R. S. Yadav et al., “Magnetic properties of Co1−xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling,” Journal of Magnetism and Magnetic Materials, vol. 378, pp. 190–199, Mar. 2015, doi: 10.1016/j.jmmm.2014.11.027. [CrossRef] [Google Scholar]
- A. V. Raut, R. S. Barkule, D. R. Shengule, and K. M. Jadhav, “Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique,” Journal of Magnetism and Magnetic Materials, vol. 358–359, pp. 87–92, May 2014, doi: 10.1016/j.jmmm.2014.01.039. [CrossRef] [Google Scholar]
- S. Hasan and B. Azhdar, “NiFe2O4 and ZnFe2O4 nanoparticles synthesis by sol-gel auto-combustion for humidity sensor applications,” J Sol-Gel Sci Technol, vol. 105, no. 2, pp. 416–429, Feb. 2023, doi: 10.1007/s10971-023-06039-4. [CrossRef] [Google Scholar]
- A. Sutka, G. Mezinskis, A. Lusis, and D. Jakovlevs, “Influence of iron non- stoichiometry on spinel zinc ferrite gas sensing properties,” Sensors and Actuators B: Chemical, vol. 171–172, pp. 204–209, Aug. 2012, doi: 10.1016/j.snb.2012.03.012. [CrossRef] [Google Scholar]
- M. Atif, S. K. Hasanain, and M. Nadeem, “Magnetization of sol–gel prepared zinc ferrite nanoparticles: Effects of inversion and particle size,” Solid State Communications, vol. 138, no. 8, pp. 416–421, May 2006, doi: 10.1016/j.ssc.2006.03.023. [CrossRef] [Google Scholar]
- M. Kurian and D. S. Nair, “Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co- precipitation methods,” Journal of Saudi Chemical Society, vol. 20, pp. S517–S522, Sep. 2016, doi: 10.1016/j.jscs.2013.03.003. [CrossRef] [Google Scholar]
- L. T. T. Nguyen, K. D. M. Nguyen, T. A. Nguyen, and K. No, “The synthesis of zinc ferrite spinel: Determination of pH value in the co-precipitation step,” Ceramics International, vol. 48, no. 3, pp. 4090–4095, Feb. 2022, doi: 10.1016/j.ceramint.2021.10.199. [CrossRef] [Google Scholar]
- I. Szczygieł, K. Winiarska, and A. Sobianowska-Turek, “The study of thermal, microstructural and magnetic properties of manganese–zinc ferrite prepared by co-precipitation method using different precipitants,” J Therm Anal Calorim, vol. 134, no. 1, pp. 51–57, Oct. 2018, doi: 10.1007/s10973-018-7417-2. [CrossRef] [Google Scholar]
- H. M. H. Zakaly, S. A. M. Issa, H. A. Saudi, G. A. Alharshan, M. a. M. Uosif, and A. M. A. Henaish, “Structure, Mössbauer, electrical, and γ-ray attenuation-properties of magnesium zinc ferrite synthesized co-precipitation method,” Sci Rep, vol. 12, no. 1, p. 15495, Sep. 2022, doi: 10.1038/s41598-022-17311-y. [CrossRef] [PubMed] [Google Scholar]
- P. T. Phong et al., “Effect of Zinc Concentration on the Structural, Optical, and Magnetic Properties of Mixed Co-Zn Ferrites Nanoparticles Synthesized by Low-Temperature Hydrothermal Method,” Metall Mater Trans A, vol. 50, no. 3, pp. 1571–1581, Mar. 2019, doi: 10.1007/s11661-018-5096-z. [CrossRef] [Google Scholar]
- G. M. Alzoubi, “Hydrothermal Synthesis of Single-Domain Zinc Ferrite Nanoparticles ($$\mathrm {ZnFe_{2}O_{4}}$$): Structural, Morphological, and Magnetic Studies,” J Supercond Nov Magn, vol. 35, no. 9, pp. 2417–2424, Sep. 2022, doi: 10.1007/s10948-022-06230-8. [CrossRef] [Google Scholar]
- Z. Liu, H. Xing, Y. Liu, H. Wang, H. Jia, and X. Ji, “Hydrothermally synthesized Zn ferrite/multi-walled carbon nanotubes composite with enhanced electromagnetic-wave absorption performance,” Journal of Alloys and Compounds, vol. 731, pp. 745–752, Jan. 2018, doi: 10.1016/j.jallcom.2017.09.317. [CrossRef] [Google Scholar]
- J. Anupriya et al., “Facile Hydrothermal Synthesis of Cubic Zinc Ferrite Nanoparticles for Electrochemical Detection of Anti-inflammatory Drug Nimesulide in Biological and Pharmaceutical Sample,” International Journal of Electrochemical Science, vol. 16, no. 7, p. 210772, 2021, doi: 10.20964/2021.07.72. [CrossRef] [Google Scholar]
- B. Mishra, B. Munisha, J. Nanda, K. J. Sankaran, and S. Suman, “Hydrothermally Synthesized Magnesium doped Zinc Ferrite Nanoparticles: An extensive study on structural, optical, magnetic, and dielectric properties,” Materials Chemistry and Physics, vol. 292, p. 126791, Dec. 2022, doi: 10.1016/j.matchemphys.2022.126791. [CrossRef] [Google Scholar]
- T. R. Tatarchuk et al., “Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles,” Journal of Alloys and Compounds, vol. 731, pp. 1256–1266, Jan. 2018, doi: 10.1016/j.jallcom.2017.10.103. [CrossRef] [Google Scholar]
- D. Nadhiya et al., “Influence of Annealing Temperature on Structural, Morphological, Optical, Magnetic, and Antimicrobial Properties of Zinc Ferrite Nanoparticles,” Plasmonics, vol. 19, no. 4, pp. 1753–1763, Aug. 2024, doi: 10.1007/s11468-023-02098-z. [CrossRef] [Google Scholar]
- D. K. Pradhan et al., “Correlation of dielectric, electrical and magnetic properties near the magnetic phase transition temperature of cobalt zinc ferrite,” Physical Chemistry Chemical Physics, vol. 19, no. 1, pp. 210–218, 2017, doi: 10.1039/C6CP06133H. [CrossRef] [Google Scholar]
- L. Ansari et al., “Synthesis, Characterization and MRI Application of Cobalt- Zinc Ferrite Nanoparticles Coated with DMSA: An In-vivo Study,” Appl Magn Reson, vol. 52, no. 1, pp. 33–45, Jan. 2021, doi: 10.1007/s00723-020-01220-2. [CrossRef] [Google Scholar]
- M. Shoba and S. Kaleemulla, “Structural, optical and dielectric studies of Er substituted zinc ferrite nanospheres,” Journal of Physics and Chemistry of Solids, vol. 111, pp. 447–457, Dec. 2017, doi: 10.1016/j.jpcs.2017.08.028. [CrossRef] [Google Scholar]
- M. Salman et al., “Non-stoichiometric zinc ferrite nanostructures: Dielectric, magnetic, optical and photoelectrochemical properties,” Materials Today Communications, vol. 28, p. 102662, Sep. 2021, doi: 10.1016/j.mtcomm.2021.102662. [CrossRef] [Google Scholar]
- P. Suppuraj, G. Thirunarayanan, M. Swaminathan, and M. Inbasekaran, “Facile Synthesis of Spinel Nanocrystalline ZnFe 2 O 4 : Enhanced Photocatalytic and Microbial Applications,” May 2017. [Google Scholar]
- J. Mayekar, V. Dhar, and S. Radha, “Synthesis, Characterization and Magnetic Study of Zinc Ferrite Nanoparticles,” IJIRSET, vol. 5, p. 8367, May 2016, doi: 10.15680/IJIRSET.2016.0505268. [Google Scholar]
- K. Muthuraman, “Synthesis of Nano sized Ce-Co Doped Zinc Ferrite,” International Journal of Computer Applications, vol. 32. [Google Scholar]
- “(4) (PDF) Structural, dielectric and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized through coprecipitation technique.” Accessed: Sep. 22, 2024. [Online]. Available: https://www.researchgate.net/publication/275945908_Structural_dielectric_an d_magnetic_properties_of_superparamagnetic_zinc_ferrite_nanoparticles_sy nthesized_through_coprecipitation_technique [Google Scholar]
- M. M. Eltabey, A. M. Massoud, and C. Radu, “Amendment of saturation magnetization, blocking temperature and particle size homogeneity in Mn-ferrite nanoparticles using Co-Zn substitution,” Materials Chemistry and Physics, vol. 186, pp. 505–512, Jan. 2017, doi: 10.1016/j.matchemphys.2016.11.026. [CrossRef] [Google Scholar]
- N. M. Deraz and A. Alarifi, “Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system,” Journal of Analytical and Applied Pyrolysis, vol. 94, pp. 41–47, Mar. 2012, doi: 10.1016/j.jaap.2011.10.004. [CrossRef] [Google Scholar]
- V. Kumar, N. Kumar, S. Das, R. Singh, K. Sarkar, and M. Kumar, “Sol-gel assisted synthesis and tuning of structural, photoluminescence, magnetic and multiferroic properties by annealing temperature in nanostructured zinc ferrite,” Jul. 2021. [Google Scholar]
- C. Hasirci, O. Karaagac, and H. Köçkar, “Superparamagnetic zinc ferrite: A correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process,” Journal of Magnetism and Magnetic Materials, vol. 474, pp. 282–286, Mar. 2019, doi: 10.1016/j.jmmm.2018.11.037. [CrossRef] [Google Scholar]
- S. Zawar, S. Atiq, S. Riaz, and S. Naseem, “Correlation between particle size and magnetic characteristics of Mn-substituted ZnFe2O4 ferrites,” Superlattices and Microstructures, vol. 93, pp. 50–56, May 2016, doi: 10.1016/j.spmi.2016.02.048. [CrossRef] [Google Scholar]
- L. T. T. Nguyen et al., “Synthesis, characterization, and application of ZnFe2O4<math><mrow is="true"><msub is="true"><mrow is="true"></mrow><mrow is="true"><mn is="true">2</mn></mrow></msub><msub is="true"><mrow is="true"><mi mathvariant="normal" is="true">O</mi></mrow><mrow is="true"><mn is="true">4</mn></mrow></msub></mrow></math>@ZnO nanoparticles for photocatalytic degradation of Rhodamine B under visible-light illumination,” Environmental Technology & Innovation, vol. 25, p. 102130, Feb. 2022, doi: 10.1016/j.eti.2021.102130. [CrossRef] [Google Scholar]
- R. Rahimi, M. Heidari-Golafzani, and M. Rabbani, “Preparation and photocatalytic application of ZnFe2O4@ZnO core–shell nanostructures,” Superlattices and Microstructures, vol. 85, pp. 497–503, Sep. 2015, doi: 10.1016/j.spmi.2015.05.047. [CrossRef] [Google Scholar]
- Y. Hou, X. Li, Q. Zhao, and G. Chen, “ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism,” Applied Catalysis B: Environmental, vol. 142–143, pp. 80–88, Oct. 2013, doi: 10.1016/j.apcatb.2013.04.062. [CrossRef] [Google Scholar]
- T. P. Oliveira et al., “Synthesis and photocatalytic investigation of ZnFe2O4 in the degradation of organic dyes under visible light,” Journal of Materials Research and Technology, vol. 9, no. 6, pp. 15001–15015, Nov. 2020, doi: 10.1016/j.jmrt.2020.10.080. [CrossRef] [Google Scholar]
- T. Liu et al., “The enhanced properties in photocatalytic wastewater treatment: Sulfanilamide (SAM) photodegradation and Cr6+ photoreduction on magnetic Ag/ZnFe2O4 nanoarchitectures,” Journal of Alloys and Compounds, vol. 867, p. 159085, Jun. 2021, doi: 10.1016/j.jallcom.2021.159085. [CrossRef] [Google Scholar]
- “Recyclable and Photocatalytic Properties of ZnFe2O4/ZnO for Wastewater Treatment and Disinfection - Maynez‐Navarro - 2020 - ChemistrySelect - Wiley Online Library.” Accessed: Sep. 23, 2024. [Online]. Available: https://chemistry- europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.202003357 [Google Scholar]
- S. Choudhary, A. Bisht, and S. Mohapatra, “Microwave-assisted synthesis of α-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanostructures for photocatalytic applications,” Ceramics International, vol. 47, no. 3, pp. 3833–3841, Feb. 2021, doi: 10.1016/j.ceramint.2020.09.243. [CrossRef] [Google Scholar]
- D. Ayyar, L. Kennedy, M. Bououdina, and J. Vijaya, “Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method,” Journal of Magnetism and Magnetic Materials, vol. 349, pp. 249–258, Jan. 2014, doi: 10.1016/j.jmmm.2013.09.013. [CrossRef] [Google Scholar]
- Y. Köseoglu, H. Yıldız, and R. Yilgin, “Synthesis, Characterization and Superparamagnetic Resonance Studies of ZnFe 2 O 4 Nanoparticles,” j nanosci nanotechnol, vol. 12, no. 3, pp. 2261–2269, Mar. 2012, doi: 10.1166/jnn.2012.5718. [CrossRef] [PubMed] [Google Scholar]
- A. Manohar, V. Vijayakanth, and K. H. Kim, “Influence of Ca doping on ZnFe2O4 nanoparticles magnetic hyperthermia and cytotoxicity study,” Journal of Alloys and Compounds, vol. 886, p. 161276, Dec. 2021, doi: 10.1016/j.jallcom.2021.161276. [CrossRef] [Google Scholar]
- “The magneto-optical behaviors modulated by unaggregated system for γ- Fe2O3–ZnFe2O4 binary ferrofluids | AIP Advances | AIP Publishing.” Accessed: Sep. 23, 2024. [Online]. Available: https://pubs.aip.org/aip/adv/article/2/4/042124/21658 [Google Scholar]
- G. Wang, Y. Ma, Y. Tong, X. Dong, and M. Li, “Solvothermal synthesis, characterization, and magnetorheological study of zinc ferrite nanocrystal clusters,” Journal of Intelligent Material Systems and Structures, vol. 28, no. 17, pp. 2331–2338, Oct. 2017, doi: 10.1177/1045389X16685449. [CrossRef] [Google Scholar]
- S. L. Darshane, R. G. Deshmukh, S. S. Suryavanshi, and I. S. Mulla, “Gas‐Sensing Properties of Zinc Ferrite Nanoparticles Synthesized by the Molten‐Salt Route,” Journal of the American Ceramic Society, vol. 91, no. 8, pp. 2724–2726, Aug. 2008, doi: 10.1111/j.1551-2916.2008.02475.x. [CrossRef] [Google Scholar]
- S. Nadaf et al., “Synthesis, characterization and application of rare earth (Lu3+) doped zinc ferrites in carbon monoxide gas sensing and supercapacitors,” Ceramics International, vol. 50, no. 13, Part A, pp. 23208–23221, Jul. 2024, doi: 10.1016/j.ceramint.2024.04.045. [CrossRef] [Google Scholar]
- “Fabrication and Characterization of W-Substituted ZnFe2O4 for Gas Sensing Applications.” Accessed: Sep. 23, 2024. [Online]. Available: https://www.mdpi.com/2079-6412/12/9/1355 [Google Scholar]
- H. Yang et al., “A simple gas sensor based on zinc ferrite hollow spheres: Highly sensitivity, excellent selectivity and long-term stability,” Sensors and Actuators B: Chemical, vol. 280, pp. 34–40, Feb. 2019, doi: 10.1016/j.snb.2018.10.056. [CrossRef] [Google Scholar]
- A. Singh, A. Singh, S. Singh, P. Tandon, B. C. Yadav, and R. R. Yadav, “Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications,” Journal of Alloys and Compounds, vol. 618, pp. 475–483, Jan. 2015, doi: 10.1016/j.jallcom.2014.08.190. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.