Open Access
Issue
E3S Web Conf.
Volume 588, 2024
Euro-Asian Conference on Sustainable Nanotechnology, Environment, & Energy (SNE2-2024)
Article Number 02015
Number of page(s) 14
Section Nanomaterials in Environment and Energy
DOI https://doi.org/10.1051/e3sconf/202458802015
Published online 08 November 2024
  1. Y. Zhu, Y. Hu, C. Tang, X. Guan, and W. Zhang, “Platinum-based systematic therapy in triple-negative breast cancer,” Biochimica et Biophysica Acta - Reviews on Cancer, vol. 1877, no. 1. 2022. doi: 10.1016/j.bbcan.2022.188678. [Google Scholar]
  2. Y. Aoyama et al., “Hypersensitivity Reaction to Carboplatin in Gynecologic Cancer: A Case Report and a Review of the Literature,” J. UOEH, vol. 43, no. 1, 2021, doi: 10.7888/juoeh.43.81. [CrossRef] [PubMed] [Google Scholar]
  3. L. Chen, B. König, T. Liu, S. Pervaiz, Y. S. Razzaque, and T. Stauber, “More than just a pressure relief valve: Physiological roles of volume-regulated LRRC8 anion channels,” Biological Chemistry, vol. 400, no. 11. 2020. doi: 10.1515/hsz-2019-0189. [Google Scholar]
  4. C. Manegold, “MS 14.01 Elements to Reach the Treatment Goal of Palliation,” J. Thorac. Oncol., vol. 12, no. 11, 2017, doi: 10.1016/j.jtho.2017.09.248. [Google Scholar]
  5. M. J. J. et al., “Safety of nivolumab and ipilimumab in combination with radiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN),” J. Clin. Oncol., vol. 37, 2019. [Google Scholar]
  6. D. P. Petrylak et al., “EV-301: Phase III study to evaluate enfortumab vedotin (EV) versus chemotherapy in patients with previously treated locally advanced or metastatic urothelial cancer (la/mUC).,” J. Clin. Oncol., vol. 37, no. 7_suppl, 2019, doi: 10.1200/jco.2019.37.7_suppl.tps497. [Google Scholar]
  7. L. M. et al., “A multicentre analysis of malignant ovarian germ cell tumours: Rationale for alignment of paediatric and adult practice and for chemotherapy de-escalation in specific subtypes,” Int. J. Gynecol. Cancer, vol. 28, no. Supplement 3, 2018. [Google Scholar]
  8. Q. Jin et al., “Enhanced Chemodynamic Therapy and Chemotherapy via Delivery of a Dual Threat ArtePt and Iodo-Click Reaction Mediated Glutathione Consumption,” Small Methods, vol. 5, no. 12, 2021, doi: 10.1002/smtd.202101047. [Google Scholar]
  9. V. Chin et al., “Chemotherapy and radiotherapy for advanced pancreatic cancer,” Cochrane Database of Systematic Reviews, vol. 2018, no. 3. 2018. doi: 10.1002/14651858.CD011044.pub2. [CrossRef] [Google Scholar]
  10. Z. Wang, G. Liu, and J. Jiang, “Profiling of apoptosis- and autophagy-associated molecules in human lung cancer A549 cells in response to cisplatin treatment using stable isotope labeling with amino acids in cell culture,” Int. J. Oncol., vol. 54, no. 3, 2019, doi: 10.3892/ijo.2019.4690. [Google Scholar]
  11. J. A. Beaver and R. Pazdur, “‘Dangling’ Accelerated Approvals in Oncology,” N. Engl. J. Med., vol. 384, no. 18, 2021, doi: 10.1056/nejmp2104846. [CrossRef] [Google Scholar]
  12. L. Galluzzi et al., “Molecular mechanisms of cisplatin resistance,” Oncogene, vol. 31, no. 15. 2012. doi: 10.1038/onc.2011.384. [Google Scholar]
  13. L. P. Rybak, D. Mukherjea, and V. Ramkumar, “Mechanisms of Cisplatin-Induced Ototoxicity and Prevention,” Semin. Hear., vol. 40, no. 2, 2019, doi: 10.1055/s-0039-1684048. [Google Scholar]
  14. R. Singh, Z. Fazal, S. J. Freemantle, and M. J. Spinella, “Mechanisms of cisplatin sensitivity and resistance in testicular germ cell tumors,” Cancer Drug Resistance, vol. 2, no. 3. 2019. doi: 10.20517/cdr.2019.19. [Google Scholar]
  15. H. Zhu, H. Luo, W. Zhang, Z. Shen, X. Hu, and X. Zhu, “Molecular mechanisms of cisplatin resistance in cervical cancer,” Drug Design, Development and Therapy, vol. 10. 2016. doi: 10.2147/DDDT.S106412. [Google Scholar]
  16. R. P. Perez et al., “Evaluation of pharmacokinetics and safety of cetuximab with cisplatin/carboplatin in patients with advanced solid tumor: Result from phase II studies,” Pharmacol. Res. Perspect., vol. 7, no. 6, 2019, doi: 10.1002/prp2.519. [Google Scholar]
  17. S. A. Aldossary, “Review on pharmacology of cisplatin: Clinical use, toxicity and mechanism of resistance of cisplatin,” Biomed. Pharmacol. J., vol. 12, no. 1, 2019, doi: 10.13005/bpj/1608. [Google Scholar]
  18. S. H. Chen and J. Y. Chang, “New insights into mechanisms of cisplatin resistance: From tumor cell to microenvironment,” International Journal of Molecular Sciences, vol. 20, no. 17. 2019. doi: 10.3390/ijms20174136. [Google Scholar]
  19. A. Abdollahi et al., “Study of RVT-101 in patients with dementia with Lewy Bodies ( DLB),” Trials, vol. 24, no. 1, 2019. [Google Scholar]
  20. A. Patnaik et al., “Abstract OT2-01-02: First in human phase 1 dose escalation and expansion study of the safety and pharmacokinetics of the oral CDK7 inhibitor XL102 as a single-agent and in combination therapy in patients with inoperable locally advanced or metastatic solid tumors, including breast cancer,” Cancer Res., vol. 82, no. 4_Supplement, 2022, doi: 10.1158/1538-7445.sabcs21-ot2-01-02. [CrossRef] [Google Scholar]
  21. J. J. Yu et al., “Adverse effects profile of dicycloplatin (DCP) offers chemotherapeutic advantage over cisplatin and carboplatin,” Anticancer Res., vol. 39, no. 8, 2019, doi: 10.21873/anticanres.13618. [Google Scholar]
  22. M. A. Graham, G. F. Lockwood, D. Greenslade, S. Brienza, M. Bayssas, and E. Gamelin, “Clinical pharmacokinetics of oxaliplatin: A critical review,” Clinical Cancer Research, vol. 6, no. 4. 2000. [Google Scholar]
  23. M. Xiang, A. D. Colevas, F. C. Holsinger, Q. T. X. Le, and B. M. Beadle, “Survival after definitive chemoradiotherapy with concurrent cisplatin or carboplatin for head and neck cancer,” JNCCN J. Natl. Compr. Cancer Netw., vol. 17, no. 9, 2019, doi: 10.6004/jnccn.2019.7297. [Google Scholar]
  24. M. D. Hall et al., “Say no to DMSO: Dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes,” Cancer Res., vol. 74, no. 14, 2014, doi: 10.1158/0008-5472.CAN-14-0247. [Google Scholar]
  25. M. M. Ali and T. A. Aziz, “Toxic Effect of Platinum Compounds: Molecular Mechanisms of Toxicity,” Al-Rafidain J. Med. Sci. ( ISSN 2789-3219 ), vol. 1, 2021, doi: 10.54133/ajms.v1i.32. [Google Scholar]
  26. N. HAPANI, S. D’Cruz, and K. Dimri, “POS-017 INCIDENCE OF ACUTE KIDNEY INJURY IN PATIENTS RECEIVING CISPLATIN AND CARBOPLATIN AND TO EVALUATE ASSOCIATED RISK FACTORS FOR ACUTE KIDNEY INJURY,” Kidney Int. Reports, vol. 7, no. 2, 2022, doi: 10.1016/j.ekir.2022.01.025. [Google Scholar]
  27. F. Griesinger, E. E. Korol, S. Kayaniyil, N. Varol, T. Ebner, and S. M. Goring, “Efficacy and safety of first-line carboplatin-versus cisplatin-based chemotherapy for non-small cell lung cancer: A meta-analysis,” Lung Cancer, vol. 135, 2019, doi: 10.1016/j.lungcan.2019.07.010. [Google Scholar]
  28. M. Munawar Hayat, M. Sohail, and M. Ashraf, “Spectrophotometric determination of cisplatin, carboplatin and oxaliplatin in pure and injectable dosage forms,” Biomed. Res., vol. 30, no. 4, 2019, doi: 10.35841/biomedicalresearch.30-19-244. [CrossRef] [Google Scholar]
  29. R. Kato et al., “Interaction of platinum agents, cisplatin, carboplatin and oxaliplatin against albumin in vivo rats and in vitro study using inductively coupled plasma- mass spectrometory,” Biopharm. Drug Dispos., vol. 40, no. 7, 2019, doi: 10.1002/bdd.2197. [Google Scholar]
  30. S. Ghosh, “Cisplatin: The first metal based anticancer drug,” Bioorganic Chemistry, vol. 88. 2019. doi: 10.1016/j.bioorg.2019.102925. [CrossRef] [PubMed] [Google Scholar]
  31. M. Zhang et al., “Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models,” Acta Biomater., vol. 124, 2021, doi: 10.1016/j.actbio.2021.02.001. [Google Scholar]
  32. S. Dasari and P. Bernard Tchounwou, “Cisplatin in cancer therapy: Molecular mechanisms of action,” European Journal of Pharmacology, vol. 740. 2014. doi: 10.1016/j.ejphar.2014.07.025. [Google Scholar]
  33. I. Giacomini, E. Ragazzi, G. Pasut, and M. Montopoli, “The pentose phosphate pathway and its involvement in cisplatin resistance,” International Journal of Molecular Sciences, vol. 21, no. 3. 2020. doi: 10.3390/ijms21030937. [Google Scholar]
  34. C. yan Fang et al., “Natural products: potential treatments for cisplatin-induced nephrotoxicity,” Acta Pharmacologica Sinica, vol. 42, no. 12. 2021. doi: 10.1038/s41401-021-00620-9. [Google Scholar]
  35. Q. Mu et al., “Research Progress on the Functions and Mechanism of circRNA in Cisplatin Resistance in Tumors,” Frontiers in Pharmacology, vol. 12. 2021. doi: 10.3389/fphar.2021.709324. [Google Scholar]
  36. Y. K. Han, J. S. Kim, G. B. Jang, and K. M. Park, “Cisplatin induces lung cell cilia disruption and lung damage via oxidative stress,” Free Radic. Biol. Med., vol. 177, 2021, doi: 10.1016/j.freeradbiomed.2021.10.032. [Google Scholar]
  37. L. MacDonagh et al., “Targeting the cancer stem cell marker, aldehyde dehydrogenase 1, to circumvent cisplatin resistance in NSCLC,” Oncotarget, vol. 8, no. 42, 2017, doi: 10.18632/oncotarget.19881. [Google Scholar]
  38. N. Guidi and V. D. Longo, “Periodic fasting starves cisplatin‐resistant cancers to death,” EMBO J., vol. 37, no. 14, 2018, doi: 10.15252/embj.201899815. [CrossRef] [Google Scholar]
  39. P. M. Bruno et al., “A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress,” Nat. Med., vol. 23, no. 4, 2017, doi: 10.1038/nm.4291. [Google Scholar]
  40. A. N. van den Pol et al., “Lassa-VSV chimeric virus targets and destroys human and mouse ovarian cancer by direct oncolytic action and by initiating an anti-tumor response,” Virology, vol. 555, 2021, doi: 10.1016/j.virol.2020.10.009. [Google Scholar]
  41. J. A. Bogart, S. N. Waqar, and M. D. Mix, “Radiation and Systemic Therapy for Limited-Stage Small-Cell Lung Cancer,” Journal of Clinical Oncology, vol. 40, no. 6. 2022. doi: 10.1200/JCO.21.01639. [Google Scholar]
  42. M. M. Almutairi et al., “Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model,” BMC Complement. Altern. Med., vol. 17, no. 1, 2017, doi: 10.1186/s12906-017-1976-9. [CrossRef] [Google Scholar]
  43. M. R. Chairudin, I. A. Marhana, and D. Erawati, “Profil Pasien Kanker Paru Primer yang Dirawat Inap dan Rawat Jalan di Rumah Sakit Umum Daerah Dr Soetomo Surabaya,” J. Respirasi, vol. 5, no. 3, 2020, doi: 10.20473/jr.v5-i.3.2019.65-71. [Google Scholar]
  44. M. Yilmaz and B. Akovali, “Hyperprogression after nivolumab for melanoma: A case report,” J. Oncol. Pharm. Pract., vol. 26, no. 1, 2020, doi: 10.1177/1078155219845436. [Google Scholar]
  45. C. P. Popolin and M. R. Cominetti, “A Review of Ruthenium Complexes Activities on Breast Cancer Cells,” Mini-Reviews Med. Chem., vol. 17, no. 15, 2017, doi: 10.2174/1389557517666170206151218. [CrossRef] [Google Scholar]
  46. M. H. Arafa and H. H. Atteia, “Protective Role of Epigallocatechin Gallate in a Rat Model of Cisplatin-Induced Cerebral Inflammation and Oxidative Damage: Impact of Modulating NF-κB and Nrf2,” Neurotox. Res., vol. 37, no. 2, 2020, doi: 10.1007/s12640-019-00095-x. [Google Scholar]
  47. C. Bailly, “Potential use of edaravone to reduce specific side effects of chemo-, radio- and immuno-therapy of cancers,” International Immunopharmacology, vol. 77. 2019. doi: 10.1016/j.intimp.2019.105967. [CrossRef] [PubMed] [Google Scholar]
  48. I. Amador-Martínez et al., “Mitochondrial Transplantation: Is It a Feasible Therapy to Prevent the Cardiorenal Side Effects of Cisplatin?,” Futur. Pharmacol., vol. 1, no. 1, 2021, doi: 10.3390/futurepharmacol1010002. [Google Scholar]
  49. L. Qi et al., “Evaluation of an EZH2 inhibitor in patient-derived orthotopic xenograft models of pediatric brain tumors alone and in combination with chemo- and radiation therapies,” Lab. Investig., vol. 102, no. 2, 2022, doi: 10.1038/s41374-021-00700-8. [Google Scholar]
  50. C. R. R. Rocha, M. M. Silva, A. Quinet, J. B. Cabral-Neto, and C. F. M. Menck, “DNA repair pathways and cisplatin resistance: An intimate relationship,” Clinics, vol. 73. 2018. doi: 10.6061/clinics/2018/e478s. [Google Scholar]
  51. I. Akartas and H. Yesim Karasulu, “Preparation and characterization of self- microemulsifying drug delivery system (SMEDDS) of cisplatin for oral use in ovarian cancer treatment,” Acta Pol. Pharm. - Drug Res., vol. 77, no. 1, 2020, doi: 10.32383/appdr/114329. [Google Scholar]
  52. K. A. Fernandez et al., “Atorvastatin is associated with reduced cisplatininduced hearing loss,” J. Clin. Invest., vol. 131, no. 1, 2021, doi: 10.1172/JCI142616. [Google Scholar]
  53. S. Dasari, S. Njiki, A. Mbemi, C. G. Yedjou, and P. B. Tchounwou, “Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy,” Int. J. Mol. Sci., vol. 23, no. 3, 2022, doi: 10.3390/ijms23031532. [CrossRef] [Google Scholar]
  54. P. Liu, X. Li, W. Lv, and Z. Xu, “Inhibition of CXCL1-CXCR2 axis ameliorates cisplatin-induced acute kidney injury by mediating inflammatory response,” Biomed. Pharmacother., vol. 122, 2020, doi: 10.1016/j.biopha.2019.109693. [Google Scholar]
  55. S. Jafarzadeh, J. Baharara, and M. Tehranipour, “Apoptosis induction with combined use of cisplatin and fisetin in cisplatin-resistant ovarian cancer cells (A2780),” Avicenna J. Med. Biotechnol., vol. 13, no. 4, 2021, doi: 10.18502/ajmb.v13i4.7202. [Google Scholar]
  56. L. M., R. D., F. S., C. A., and B. D.R., “Poly(ADP-ribose) polymerase-1 inhibition: Preclinical and clinical development of synthetic lethality,” Molecular Medicine, vol. 17, no. 7–8. 2011. [Google Scholar]
  57. M. D. Shelley, A. Cleves, T. J. Wilt, and M. D. Mason, “Gemcitabine chemotherapy for the treatment of metastatic bladder carcinoma,” BJU International, vol. 108, no. 2. 2011. doi: 10.1111/j.1464-410X.2011.10341.x. [Google Scholar]
  58. J. D., “Chemotherapy through the 21st Century,” J. Thorac. Oncol., vol. 13, no. 10, 2018. [Google Scholar]
  59. R. Iyengar et al., “PCN108 COMPARISON OF HEALTHCARE RESOURCE UTILIZATION AND COSTS FOR WALDENSTRÖM’S MACROGLOBULINEMIA (WM) PATIENTS TREATED WITH IBRUTINIB OR CHEMOIMMUNOTHERAPY,” Value Heal., vol. 22, 2019, doi: 10.1016/j.jval.2019.04.232. [Google Scholar]
  60. T. Shuang, M. Wang, C. Shi, Y. Zhou, and D. Wang, “Down-regulated expression of miR-134 contributes to paclitaxel resistance in human ovarian cancer cells,” FEBS Lett., vol. 589, no. 20, 2015, doi: 10.1016/j.febslet.2015.08.047. [Google Scholar]
  61. S. R.E., “Cisplatin versus carboplatin in NSCLC: Is there one ‘best’ answer?,” Current Treatment Options in Oncology, vol. 9, no. 4–6. 2008. [Google Scholar]
  62. D. Nielsen et al., “Epirubicin or epirubicin and vindesine in advanced breast cancer. A phase III study,” Ann. Oncol., vol. 1, no. 4, 1990, doi: 10.1093/oxfordjournals.annonc.a057748. [Google Scholar]
  63. Y. Jia and J. Xie, “Promising molecular mechanisms responsible for gemcitabine resistance in cancer,” Genes and Diseases, vol. 2, no. 4. 2015. doi: 10.1016/j.gendis.2015.07.003. [Google Scholar]
  64. M. U. Nessa, P. Beale, C. Chan, J. Q. Yu, and F. Huq, “Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models,” Anticancer Res., vol. 31, no. 11, 2011. [Google Scholar]
  65. P. K. Krishnakumar et al., “Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment,” Sci. Total Environ., vol. 566–567, 2016, doi: 10.1016/j.scitotenv.2016.05.180. [Google Scholar]
  66. Anonymous., “Abstracts of Papers Submitted to the 39th Annual Meeting of the American Pancreatic Association,” Pancreas, vol. 37, no. 4, 2008. [Google Scholar]
  67. D. Johnson, “MS21.02 Chemotherapy through the 21st Century,” J. Thorac. Oncol., vol. 13, no. 10, 2018, doi: 10.1016/j.jtho.2018.08.173. [Google Scholar]
  68. P. Cirone, C. J. Andresen, J. R. Eswaraka, P. B. Lappin, and C. M. Bagi, “Patient- derived xenografts reveal limits to PI3K/mTOR- and MEK-mediated inhibition of bladder cancer,” Cancer Chemother. Pharmacol., vol. 73, no. 3, 2014, doi: 10.1007/s00280-014-2376-1. [Google Scholar]
  69. Q. Li et al., “Efficacy and safety of cinobufacini injection combined with vinorelbine and cisplatin regimen chemotherapy for stage III/IV non-small cell lung cancer: A protocol for systematic review and meta-analysis of randomized controlled trials,” Medicine (United States), vol. 99, no. 31. 2020. doi: 10.1097/MD.0000000000021539. [Google Scholar]
  70. H. Yu, “ES02.01 Biomarker Testing in LA Disease,” J. Thorac. Oncol., vol. 14, no. 10, 2019, doi: 10.1016/j.jtho.2019.08.073. [Google Scholar]
  71. F. De Felice et al., “Survival and toxicity of weekly cisplatin chemoradiotherapy versus three-weekly cisplatin chemoradiotherapy for head and neck cancer: A systematic review and meta-analysis endorsed by the Italian Association of Radiotherapy and Clinical Oncology (AIRO),” Critical Reviews in Oncology/Hematology, vol. 162. 2021. doi: 10.1016/j.critrevonc.2021.103345. [CrossRef] [PubMed] [Google Scholar]
  72. W. Ben Ayed et al., “Toxicity, risk factors and management of cisplatin-induced toxicity: A prospective study,” J. Oncol. Pharm. Pract., vol. 26, no. 7, 2020, doi: 10.1177/1078155219901305. [Google Scholar]
  73. H. Hamano et al., “Diphenhydramine may be a preventive medicine against cisplatin-induced kidney toxicity,” Kidney Int., vol. 99, no. 4, 2021, doi: 10.1016/j.kint.2020.10.041. [Google Scholar]
  74. R. Bademci et al., “Demonstration of the protective effect of ghrelin in the livers of rats with cisplatin toxicity,” Hum. Exp. Toxicol., vol. 40, no. 12, 2021, doi: 10.1177/09603271211026722. [Google Scholar]
  75. Y. Li, G. Yang, M. Li, and X. Tong, “Nursing Observation on the Clinical Efficacy and Toxicity of Lobaplatin Compared with Cisplatin in the Treatment of Locally Advanced Hypopharyngeal Carcinoma Based on Intelligent CT Imaging,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/9982888. [Google Scholar]
  76. M. M. Algandaby, “Quercetin attenuates cisplatin-induced ovarian toxicity in rats: Emphasis on anti-oxidant, anti-inflammatory and anti-apoptotic activities,” Arab. J. Chem., vol. 14, no. 7, 2021, doi: 10.1016/j.arabjc.2021.103191. [CrossRef] [Google Scholar]
  77. A. Falco et al., “Ibero-american expert consensus on squamous cell carcinoma of the head and neck treatment in patients unable to receive cisplatin: Recommendations for clinical practice,” Cancer Management and Research, vol. 13. 2021. doi: 10.2147/CMAR.S322411. [Google Scholar]
  78. E. Galfetti, A. Cerutti, M. Ghielmini, E. Zucca, and L. Wannesson, “Risk factors for renal toxicity after inpatient cisplatin administration,” BMC Pharmacol. Toxicol., vol. 21, no. 1, 2020, doi: 10.1186/s40360-020-0398-3. [CrossRef] [Google Scholar]
  79. M. B. Visacri et al., “Can acetylcysteine ameliorate cisplatin-induced toxicities and oxidative stress without decreasing antitumor efficacy? A randomized, double- blind, placebo-controlled trial involving patients with head and neck cancer,” Cancer Med., vol. 8, no. 5, 2019, doi: 10.1002/cam4.2072. [Google Scholar]
  80. R. Prasad and S. B. Prasad, “Histoprotective effect of rutin against cisplatin- induced toxicities in tumor-bearing mice: Rutin lessens cisplatin-induced toxicities,” Hum. Exp. Toxicol., vol. 40, no. 2, 2021, doi: 10.1177/0960327120947793. [Google Scholar]
  81. M. Perše, “Cisplatin mouse models: Treatment, toxicity and translatability,” Biomedicines, vol. 9, no. 10. 2021. doi: 10.3390/biomedicines9101406. [Google Scholar]
  82. N. Rauf et al., “Therapeutic effects of chitosan-embedded vitamin C, E nanoparticles against cisplatin-induced gametogenic and androgenic toxicity in adult male rats,” Environ. Sci. Pollut. Res., vol. 28, no. 40, 2021, doi: 10.1007/s11356-021-14516-y. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.