Open Access
Issue |
E3S Web Conf.
Volume 588, 2024
Euro-Asian Conference on Sustainable Nanotechnology, Environment, & Energy (SNE2-2024)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 19 | |
Section | Nanomaterials in Environment and Energy | |
DOI | https://doi.org/10.1051/e3sconf/202458802013 | |
Published online | 08 November 2024 |
- B.H. Baker, C.A. Aldridge, A.R. Omer, Water: Availability and use, Mississippi State University Extension, 2016. [Google Scholar]
- G. Ren, H. Han, Y. Wang, S. Liu, J. Zhao, X. Meng, Z. Li, Recent advances of photocatalytic application in water treatment: A review, Nanomaterials 11 (2021) 1804. [CrossRef] [PubMed] [Google Scholar]
- G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environmental chemistry letters 17 (2019) 145-155. [CrossRef] [Google Scholar]
- P. Rajasulochana, V. Preethy, Comparison on efficiency of various techniques in treatment of waste and sewage water–A comprehensive review, Resource-Efficient Technologies 2 (2016) 175-184. [CrossRef] [Google Scholar]
- S. Mishra, B. Sundaram, Efficacy of nanoparticles as photocatalyst in leachate treatment, Nanotechnology for Environmental Engineering 7 (2022) 173-192. [CrossRef] [Google Scholar]
- S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review, Nanotechnology 29 (2018) 342001. [CrossRef] [PubMed] [Google Scholar]
- A. Kumar, K.M. Gangawane, B. Ramanjaneyulu, Ferrofluids for waste-water treatment, in: International Conference on Chemical, Bio and Environmental Engineering, Springer, 2021 pp. 723-744. [Google Scholar]
- G. Ren, H. Han, Y. Wang, S. Liu, J. Zhao, X. Meng, Z. Li, Recent Advances of Photocatalytic Application in Water Treatment: A Review, Nanomaterials (Basel) 11 (2021). [Google Scholar]
- S.R. Pouran, A.A. Aziz, W.M.A.W. Daud, Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters, Journal of Industrial and Engineering Chemistry 21 (2015) 53-69. [CrossRef] [Google Scholar]
- H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chemical Society Reviews 43 (2014) 5234-5244. [CrossRef] [PubMed] [Google Scholar]
- X. Zhang, Y.L. Chen, R.-S. Liu, D.P. Tsai, Plasmonic photocatalysis, Reports on Progress in Physics 76 (2013) 046401. [CrossRef] [PubMed] [Google Scholar]
- T.S. Atabaev, A. Molkenova, Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: recent advances and perspectives, Frontiers of Materials Science 13 (2019) 335-341. [CrossRef] [Google Scholar]
- Z. Sabouri, A. Akbari, H.A. Hosseini, M. Darroudi, Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects, Journal of Molecular Structure 1173 (2018) 931-936. [CrossRef] [Google Scholar]
- M. Anpo, Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV–visible light irradiation: approaches in realizing high efficiency in the use of visible light, Bulletin of the Chemical Society of Japan 77 (2004) 1427-1442. [CrossRef] [Google Scholar]
- K.O. Egbo, C.P. Liu, C.E. Ekuma, K.M. Yu, Vacancy defects induced changes in the electronic and optical properties of NiO studied by spectroscopic ellipsometry and first- principles calculations, Journal of Applied Physics 128 (2020). [Google Scholar]
- S. Park, H.-S. Ahn, C.-K. Lee, H. Kim, H. Jin, H.-S. Lee, S. Seo, J. Yu, S. Han, Interaction and ordering of vacancy defects in NiO, Physical Review B—Condensed Matter and Materials Physics 77 (2008) 134103. [CrossRef] [Google Scholar]
- J. Petersen, F. Twagirayezu, P.D. Borges, L. Scolfaro, W. Geerts, Ab initio study of oxygen vacancy effects on electronic and optical properties of NiO, MRS Advances 1 (2016) 2617-2622. [CrossRef] [Google Scholar]
- C. Zhao, Y. Yang, L. Luo, S. Shao, Y. Zhou, Y. Shao, F. Zhan, J. Yang, Y. Zhou, γ-ray induced formation of oxygen vacancies and Ti3+ defects in anatase TiO2 for efficient photocatalytic organic pollutant degradation, Science of the Total Environment 747 (2020) 141533. [CrossRef] [Google Scholar]
- X. Xu, X. Ding, X. Yang, P. Wang, S. Li, Z. Lu, H. Chen, Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study, Journal of hazardous materials 364 (2019) 691-699. [CrossRef] [PubMed] [Google Scholar]
- X. Gao, K. Xu, H. He, S. Liu, X. Zhao, Oxygen vacancies–Cu doping junction control of δ-Bi2O3 nanosheets for enhanced photocatalytic nitrogen fixation, Journal of Industrial and Engineering Chemistry 111 (2022) 129-136. [CrossRef] [Google Scholar]
- B. Lei, W. Cui, J. Sheng, H. Wang, P. Chen, J. Li, Y. Sun, F. Dong, Synergistic effects of crystal structure and oxygen vacancy on Bi2O3 polymorphs: intermediates activation, photocatalytic reaction efficiency, and conversion pathway, Science Bulletin 65 (2020) 467-476. [CrossRef] [PubMed] [Google Scholar]
- L. Liu, J. Liu, K. Sun, J. Wan, F. Fu, J. Fan, Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance, Chemical Engineering Journal 411 (2021) 128629. [CrossRef] [Google Scholar]
- Y. Yuan, X. Dong, L. Ricardez-Sandoval, Insights into syngas combustion on a defective NiO surface for chemical looping combustion: Oxygen migration and vacancy effects, The Journal of Physical Chemistry C 124 (2020) 28359-28370. [CrossRef] [Google Scholar]
- J.J. Varghese, S.H. Mushrif, Insights into the C–H bond activation on NiO surfaces: The role of nickel and oxygen vacancies and of low valent dopants on the reactivity and energetics, The Journal of Physical Chemistry C 121 (2017) 17969-17981. [CrossRef] [Google Scholar]
- M.N. Siddique, P. Tripathi, Lattice defects formulated ferromagnetism in nonmagnetic La (III) ion doped NiO nanostructures: Role of oxygen vacancy, Journal of Alloys and Compounds 825 (2020) 154071. [CrossRef] [Google Scholar]
- N.M. Rasi, S. Ponnurangam, N. Mahinpey, First-principles investigations into the effect of oxygen vacancies on the enhanced reactivity of NiO via Bader charge and density of states analysis, Catalysis Today 407 (2023) 172-181. [CrossRef] [Google Scholar]
- L. Liu, Q. Liu, Y. Wang, J. Huang, W. Wang, L. Duan, X. Yang, X. Yu, X. Han, N. Liu, Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization, Applied Catalysis B: Environmental 254 (2019) 166-173. [CrossRef] [Google Scholar]
- J. Dawson, Y. Guo, J. Robertson, Energetics of intrinsic defects in NiO and the consequences for its resistive random access memory performance, Applied Physics Letters 107 (2015). [CrossRef] [Google Scholar]
- N.M. Rasi, A.S. Hyla, S. Ponnurangam, N. Mahinpey, Effects of support and oxygen vacancies on the energetics of NiO reduction with H 2 for the chemical looping combustion (CLC) reaction; a DFT study, Physical Chemistry Chemical Physics 23 (2021) 12795-12806. [CrossRef] [PubMed] [Google Scholar]
- M.A. Peck, M.A. Langell, Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS, Chemistry of Materials 24 (2012) 4483-4490. [CrossRef] [Google Scholar]
- A.C. Gandhi, S.Y. Wu, Strong deep-level-emission photoluminescence in NiO nanoparticles, Nanomaterials 7 (2017) 231. [CrossRef] [PubMed] [Google Scholar]
- H. Radinger, P. Connor, S. Tengeler, R.W. Stark, W. Jaegermann, B. Kaiser, Importance of nickel oxide lattice defects for efficient oxygen evolution reaction, Chemistry of Materials 33 (2021) 8259-8266. [CrossRef] [Google Scholar]
- P.S. Bagus, C.J. Nelin, C.R. Brundle, B.V. Crist, E.S. Ilton, N. Lahiri, K.M. Rosso, Main and satellite features in the Ni 2p XPS of NiO, Inorganic Chemistry 61 (2022) 18077-18094. [CrossRef] [PubMed] [Google Scholar]
- W.-B. Zhang, N. Yu, W.-Y. Yu, B.-Y. Tang, Stability and magnetism of vacancy in NiO: A GGA+ U study, The European Physical Journal B 64 (2008) 153-158. [CrossRef] [Google Scholar]
- M.I. Pintor-Monroy, B.L. Murillo-Borjas, M. Catalano, M.A. Quevedo-Lopez, Controlling carrier type and concentration in NiO films to enable in situ PN homojunctions, ACS applied materials & interfaces 11 (2019) 27048-27056. [CrossRef] [PubMed] [Google Scholar]
- I. Abdul Rahman, M. Ayob, S. Radiman, Enhanced Photocatalytic Performance of NiO‐ Decorated ZnO Nanowhiskers for Methylene Blue Degradation, Journal of Nanotechnology 2014 (2014) 212694. [CrossRef] [Google Scholar]
- Z. Sabouri, A. Akbari, H.A. Hosseini, A. Hashemzadeh, M. Darroudi, Bio-based synthesized NiO nanoparticles and evaluation of their cellular toxicity and wastewater treatment effects, Journal of Molecular Structure 1191 (2019) 101-109. [CrossRef] [Google Scholar]
- D.K. Tiwari, J. Behari, P.S. Prasenjit Sen, Application of nanoparticles in waste water treatment, (2008). [Google Scholar]
- K. Bhunia, M. Chandra, D. Pradhan, Exposed facets-dependent catalytic properties of nanocrystals: noble metals (Pd, Pt, and Au) and oxides of first row d-block elements, Journal of Nanoscience and Nanotechnology 19 (2019) 332-355. [Google Scholar]
- M.B. Khorrami, H.R. Sadeghnia, A. Pasdar, M. Ghayour-Mobarhan, B. Riahi-Zanjani, M. Darroudi, Role of Pullulan in preparation of ceria nanoparticles and investigation of their biological activities, Journal of Molecular Structure 1157 (2018) 127-131. [CrossRef] [Google Scholar]
- H.S. Devi, T.D. Singh, N.R. Singh, Green synthesis and catalytic activity of composite NiO-Ag nanoparticles for photocatalytic degradation of dyes, Journal of the Indian Chemical Society 94 (2017) 159-169. [Google Scholar]
- Y. Liu, J. Jia, Y.V. Li, J. Hao, K. Pan, Novel ZnO/NiO Janus-like nanofibers for effective photocatalytic degradation, Nanotechnology 29 (2018) 435704. [CrossRef] [PubMed] [Google Scholar]
- S. Balamurugan, A. Balu, V. Narasimman, G. Selvan, K. Usharani, J. Srivind, M. Suganya, N. Manjula, C. Rajashree, V. Nagarethinam, Multi metal oxide CdO–Al2O3–NiO nanocomposite—synthesis, photocatalytic and magnetic properties, Materials research express 6 (2018) 015022. [CrossRef] [Google Scholar]
- B. Ks, A. Bose, N. Cs, Synthesis of NiO/TiO₂ Binary Nano Composite for the Enhancement of Gas Sensing Properties, European Journal of Applied Physics 5 (2023) 1-7. [CrossRef] [Google Scholar]
- M. Shi, T. Qiu, B. Tang, G. Zhang, R. Yao, W. Xu, J. Chen, X. Fu, H. Ning, J. Peng, Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism, Micromachines (Basel) 12 (2021). [Google Scholar]
- S. Raha, M. Ahmaruzzaman, ZnO nanostructured materials and their potential applications: progress, challenges and perspectives, Nanoscale Advances 4 (2022) 1868-1925. [CrossRef] [PubMed] [Google Scholar]
- S. Vivek, S. Preethi, K.S. Babu, Interfacial effect of mono (Cu, Ni) and bimetallic (Cu– Ni) decorated ZnO nanoparticles on the sunlight assisted photocatalytic activity, Materials Chemistry and Physics 278 (2022) 125669. [CrossRef] [Google Scholar]
- H.D. Weldekirstos, B. Habtewold, D.M. Kabtamu, Surfactant-assisted synthesis of NiO- ZnO and NiO-CuO nanocomposites for enhanced photocatalytic degradation of methylene blue under UV light irradiation, Frontiers in Materials 9 (2022) 832439. [CrossRef] [Google Scholar]
- C. Camposeco-Negrete, Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA, Journal of cleaner production 53 (2013) 195-203. [CrossRef] [Google Scholar]
- X.-Y. Ni, H. Liu, L. Xin, Z.-B. Xu, Y.-H. Wang, L. Peng, Z. Chen, Y.-H. Wu, H.-Y. Hu, Disinfection performance and mechanism of the carbon fiber-based flow-through electrode system (FES) towards Gram-negative and Gram-positive bacteria, Electrochimica Acta 341 (2020) 135993. [CrossRef] [Google Scholar]
- A.G. Akerdi, S.H. Bahrami, Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: A review, Journal of Environmental Chemical Engineering 7 (2019) 103283. [CrossRef] [Google Scholar]
- X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, F. Meng, A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties, Journal of Alloys and Compounds 739 (2018) 260-269. [CrossRef] [Google Scholar]
- L. Zhu, W. Zeng, J. Yang, Y. Li, One-step hydrothermal fabrication of nanosheet- assembled NiO/ZnO microflower and its ethanol sensing property, Ceramics International 44 (2018) 19825-19830. [CrossRef] [Google Scholar]
- Y. Wang, G. Balakrishnan, Microstructural, antifungal and photocatalytic activity of NiO–ZnO nanocomposite, Materials Science-Poland 42 (2024) 107-115. [CrossRef] [Google Scholar]
- Shivangi, S. Bhardwaj, T. Sarkar, Core–shell type magnetic Ni/NiO nanoparticles as recyclable adsorbent for Pb (II) and Cd (II) ions: One-pot synthesis, adsorption performance, and mechanism, Journal of the Taiwan Institute of Chemical Engineers 113 (2020) 223-230. [CrossRef] [Google Scholar]
- A.M. Hamdan, A. Sardi, R.P. Reksamunandar, Z. Maulida, D.A. Arsa, S.S. Lubis, K. Nisah, Green synthesis of NiO nanoparticles using a Cd hyperaccumulator (Lactuca sativa L.) and its application as a Pb(II) and Cu(II) adsorbent, Environmental Nanotechnology, Monitoring & Management 21 (2024) 100910. [CrossRef] [Google Scholar]
- K.K. Katibi, K.F. Yunos, H. Che Man, A.Z. Aris, M.Z. Mohd Nor, R.S. Azis, A.M. Umar, Contemporary Techniques for Remediating Endocrine-Disrupting Compounds in Various Water Sources: Advances in Treatment Methods and Their Limitations, Polymers (Basel) 13 (2021). [Google Scholar]
- C. Zhang, Q. Li, Q. Chen, Electrochemical Treatment of Landfill Leachate to Remove Chromium (VI) using Ni3N and NiO NPs anodes, International Journal of Electrochemical Science 16 (2021) 210710. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.