Open Access
Issue
E3S Web Conf.
Volume 588, 2024
Euro-Asian Conference on Sustainable Nanotechnology, Environment, & Energy (SNE2-2024)
Article Number 02016
Number of page(s) 14
Section Nanomaterials in Environment and Energy
DOI https://doi.org/10.1051/e3sconf/202458802016
Published online 08 November 2024
  1. L. Lu et al., “Metal organic framework@polysilsesequioxane core/shell-structured nanoplatform for drug delivery,” Pharmaceutics, vol. 12, no. 2, 2020, doi: 10.3390/pharmaceutics12020098. [PubMed] [Google Scholar]
  2. S. Javanbakht, M. Pooresmaeil, and H. Namazi, “Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio- nanocomposite as a nanocarrier for drug delivery system,” Carbohydr. Polym., vol. 208, 2019, doi: 10.1016/j.carbpol.2018.12.066. [Google Scholar]
  3. S. He et al., “Metal-organic frameworks for advanced drug delivery,” Acta Pharmaceutica Sinica B, vol. 11, no. 8. 2021. doi: 10.1016/j.apsb.2021.03.019. [Google Scholar]
  4. Z. Gharehdaghi, R. Rahimi, S. M. Naghib, and F. Molaabasi, “Cu (II)-porphyrin metal–organic framework/graphene oxide: synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment,” J. Biol. Inorg. Chem., vol. 26, no. 6, 2021, doi: 10.1007/s00775-021-01887-3. [Google Scholar]
  5. M. J. Molaei, “Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review,” Journal of Drug Delivery Science and Technology, vol. 61. 2021. doi: 10.1016/j.jddst.2020.101830. [CrossRef] [Google Scholar]
  6. G. H. Shin and H. S. Lee, “Minimal Magnetic Dipole Moment for the Solar Cell Array Using GaInP/GaAs/Ge Cells,” J. Electr. Eng. Technol., vol. 15, no. 3, 2020, doi: 10.1007/s42835-020-00392-y. [Google Scholar]
  7. W. Deping, H. Wenming, F. Wufeng, X. Xiaohong, L. Junqiang, and L. Hongbo, “Shape-assisted spherical MOFs/Amine functionalized graphene hybrids for high-performance lithium-ion batteries,” Microporous Mesoporous Mater., vol. 323, 2021, doi: 10.1016/j.micromeso.2021.111240. [CrossRef] [Google Scholar]
  8. X. Qi et al., “Harnessing surface-functionalized metal-organic frameworks for selective tumor cell capture,” Chem. Mater., vol. 29, no. 19, 2017, doi: 10.1021/acs.chemmater.7b03269. [Google Scholar]
  9. H. Hashemi and H. Namazi, “Sonochemically synthesized blue fluorescent functionalized graphene oxide as a drug delivery system,” Ultrason. Sonochem., vol. 42, 2018, doi: 10.1016/j.ultsonch.2017.11.010. [Google Scholar]
  10. Z. Pachuau and R. H. D. Lyngdoh, “Molecular orbital studies on the Wagner- Meerwein migration in some acyclic pinacol-pinacolone rearrangements,” J. Chem. Sci., vol. 116, no. 2, 2004, doi: 10.1007/BF02708200. [Google Scholar]
  11. Z. Karimzadeh, S. Javanbakht, and H. Namazi, “Carboxymethylcellulose/MOF- 5/Graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent,” BioImpacts, vol. 9, no. 1. 2019. doi: 10.15171/bi.2019.02. [Google Scholar]
  12. M. Xie et al., “Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application,” Appl. Surf. Sci., vol. 440, 2018, doi: 10.1016/j.apsusc.2018.01.175. [Google Scholar]
  13. I. Abánades Lázaro et al., “Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery,” ACS Appl. Mater. Interfaces, vol. 10, no. 37, 2018, doi: 10.1021/acsami.8b11652. [Google Scholar]
  14. Z. Gordi, M. Ghorbani, and M. Ahmadian Khakhiyani, “Adsorptive removal of enrofloxacin with magnetic functionalized graphene oxide@ metal–organic frameworks employing D-optimal mixture design,” Water Environ. Res., vol. 92, no. 11, 2020, doi: 10.1002/wer.1346. [Google Scholar]
  15. B. Healy, T. Yu, D. da Silva Alves, and C. B. Breslin, “Review of Recent Developments in the Formulation of Graphene-Based Coatings for the Corrosion Protection of Metals and Alloys,” Corros. Mater. Degrad., vol. 1, no. 3, 2020, doi: 10.3390/cmd1030015. [Google Scholar]
  16. L. Chen, X. Zhang, X. Cheng, Z. Xie, Q. Kuang, and L. Zheng, “The function of metal-organic frameworks in the application of MOF-based composites,” Nanoscale Advances, vol. 2, no. 7. 2020. doi: 10.1039/d0na00184h. [Google Scholar]
  17. C. Pettinari, F. Marchetti, N. Mosca, G. Tosi, and A. Drozdov, “Application of metal − organic frameworks,” Polymer International, vol. 66, no. 6. 2017. doi: 10.1002/pi.5315. [Google Scholar]
  18. Q. Wang and D. Astruc, “State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis,” Chemical Reviews, vol. 120, no. 2. 2020. doi: 10.1021/acs.chemrev.9b00223. [Google Scholar]
  19. H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science, vol. 341, no. 6149. 2013. doi: 10.1126/science.1230444. [CrossRef] [Google Scholar]
  20. W. Lu et al., “Tuning the structure and function of metal-organic frameworks via linker design,” Chemical Society Reviews, vol. 43, no. 16. 2014. doi: 10.1039/c4cs00003j. [Google Scholar]
  21. M. Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, and H. Garcia, “Mixed-Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design,” Angewandte Chemie - International Edition, vol. 58, no. 43. 2019. doi: 10.1002/anie.201902229. [Google Scholar]
  22. Q. X. Wang and G. Li, “Bi(III) MOFs: Syntheses, structures and applications,” Inorganic Chemistry Frontiers, vol. 8, no. 3. 2021. doi: 10.1039/d0qi01055c. [Google Scholar]
  23. X. Zhang et al., “Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working Capacity,” Adv. Mater., vol. 32, no. 17, 2020, doi: 10.1002/adma.201907995. [Google Scholar]
  24. S. Pizzanelli, S. Monti, L. G. Gordeeva, M. V. Solovyeva, A. Freni, and C. Forte, “A close view of the organic linker in a MOF: structural insights from a combined 1H NMR relaxometry and computational investigation,” Phys. Chem. Chem. Phys., vol. 22, no. 27, 2020, doi: 10.1039/d0cp01863e. [Google Scholar]
  25. S. Yu et al., “Research Progress in Novel In-situ Integrative Photovoltaic-storage Tandem Cells,” Wuji Cailiao Xuebao/Journal of Inorganic Materials, vol. 35, no. 6. 2020. doi: 10.15541/jim20190342. [Google Scholar]
  26. N. Contreras-Pereda, S. Pané, J. Puigmartí-Luis, and D. Ruiz-Molina, “Conductive properties of triphenylene MOFs and COFs,” Coordination Chemistry Reviews, vol. 460. 2022. doi: 10.1016/j.ccr.2022.214459. [CrossRef] [Google Scholar]
  27. X. Zhang, S. Zhang, Y. Tang, X. Huang, and H. Pang, “Recent advances and challenges of metal–organic framework/graphene-based composites,” Composites Part B: Engineering, vol. 230. 2022. doi: 10.1016/j.compositesb.2021.109532. [Google Scholar]
  28. E. Adatoz and S. Keskin, “Application of MD simulations to predict membrane properties of MOFs,” J. Nanomater., vol. 2015, 2015, doi: 10.1155/2015/136867. [CrossRef] [PubMed] [Google Scholar]
  29. M. O’keeffe, “Design of MOFs and intellectual content in reticular chemistry: A personal view,” Chem. Soc. Rev., vol. 38, no. 5, 2009, doi: 10.1039/b802802h. [Google Scholar]
  30. H. Wang, X. Pei, D. M. Proserpio, and O. M. Yaghi, “Design of MOFs with Absolute Structures: A Case Study,” Isr. J. Chem., vol. 61, no. 11–12, 2021, doi: 10.1002/ijch.202100102. [Google Scholar]
  31. X. Zhang et al., “A historical overview of the activation and porosity of metal- organic frameworks,” Chemical Society Reviews, vol. 49, no. 20. 2020. doi: 10.1039/d0cs00997k. [Google Scholar]
  32. M. Al Sharabati, R. Sabouni, and G. A. Husseini, “Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review,” Nanomaterials, vol. 12, no. 2. 2022. doi: 10.3390/nano12020277. [CrossRef] [PubMed] [Google Scholar]
  33. A. A. El-Bindary, E. A. Toson, K. R. Shoueir, H. A. Aljohani, and M. M. Abo-Ser, “Metal–organic frameworks as efficient materials for drug delivery: Synthesis, characterization, antioxidant, anticancer, antibacterial and molecular docking investigation,” Appl. Organomet. Chem., vol. 34, no. 11, 2020, doi: 10.1002/aoc.5905. [Google Scholar]
  34. L. Feng and Z. Liu, “Graphene in biomedicine: Opportunities and challenges,” Nanomedicine, vol. 6, no. 2, 2011, doi: 10.2217/nnm.10.158. [Google Scholar]
  35. S. Song et al., “Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics,” Colloids and Surfaces B: Biointerfaces, vol. 185. 2020. doi: 10.1016/j.colsurfb.2019.110596. [CrossRef] [Google Scholar]
  36. I. I. Kulakova and G. V. Lisichkin, “Chemical Modification of Graphene,” Russian Journal of General Chemistry, vol. 90, no. 10. 2020. doi: 10.1134/S1070363220100151. [Google Scholar]
  37. T. Mathew et al., “Graphene-based functional nanomaterials for biomedical and bioanalysis applications,” FlatChem, vol. 23, 2020, doi: 10.1016/j.flatc.2020.100184. [CrossRef] [Google Scholar]
  38. A. Romiszewska and A. Bombalska, “Antibacterial properties of graphene and its derivatives,” Bull. Mil. Univ. Technol., vol. 68, no. 4, 2020, doi: 10.5604/01.3001.0013.9731. [Google Scholar]
  39. Y. Wang, J. Li, X. Li, J. Shi, Z. Jiang, and C. Y. Zhang, “Graphene-based nanomaterials for cancer therapy and anti-infections,” Bioactive Materials, vol. 14. 2022. doi: 10.1016/j.bioactmat.2022.01.045. [Google Scholar]
  40. G. Perini et al., “Enhanced chemotherapy for glioblastoma multiforme mediated by functionalized graphene quantum dots,” Materials (Basel)., vol. 13, no. 18, 2020, doi: 10.3390/ma13184139. [CrossRef] [Google Scholar]
  41. J. R. Lakkakula, P. Gujarathi, P. Pansare, and S. Tripathi, “A comprehensive review on alginate-based delivery systems for the delivery of chemotherapeutic agent: Doxorubicin,” Carbohydrate Polymers, vol. 259. 2021. doi: 10.1016/j.carbpol.2021.117696. [CrossRef] [PubMed] [Google Scholar]
  42. F. Soysal, Z. Çıplak, B. Getiren, C. Gökalp, and N. Yıldız, “Fabrication of polypyrrole enveloped reduced graphene oxide/iron oxide and determination of its photothermal properties,” Mater. Res. Bull., vol. 150, 2022, doi: 10.1016/j.materresbull.2022.111792. [CrossRef] [Google Scholar]
  43. J. L. Zheng, D. D. Meng, X. Zheng, Y. Zhang, and H. F. Chen, “Graphene-based materials: A new tool to fight against breast cancer,” International Journal of Pharmaceutics, vol. 603. 2021. doi: 10.1016/j.ijpharm.2021.120644. [CrossRef] [PubMed] [Google Scholar]
  44. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, and G. Férey, “Metal-organic frameworks as efficient materials for drug delivery,” Angew. Chemie - Int. Ed., vol. 45, no. 36, 2006, doi: 10.1002/anie.200601878. [Google Scholar]
  45. M. Nasrabadi, M. A. Ghasemzadeh, and M. R. Z. Monfared, “The preparation and characterization of UiO-66 metal-organic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities,” New J. Chem., vol. 43, no. 40, 2019, doi: 10.1039/c9nj03216a. [Google Scholar]
  46. P. Horcajada et al., “Flexible porous metal-organic frameworks for a controlled drug delivery,” J. Am. Chem. Soc., vol. 130, no. 21, 2008, doi: 10.1021/ja710973k. [Google Scholar]
  47. Y. Sun et al., “Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications,” Nano-Micro Letters, vol. 12, no. 1. 2020. doi: 10.1007/s40820-020-00423-3. [Google Scholar]
  48. J. Yang et al., “Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy,” RSC Advances, vol. 11, no. 6. 2021. doi: 10.1039/d0ra09878g. [Google Scholar]
  49. I. Christodoulou et al., “Degradation mechanism of porous metal-organic frameworks by in situ atomic force microscopy,” Nanomaterials, vol. 11, no. 3, 2021, doi: 10.3390/nano11030722. [CrossRef] [PubMed] [Google Scholar]
  50. H. D. Lawson, S. P. Walton, and C. Chan, “Metal-Organic Frameworks for Drug Delivery: A Design Perspective,” ACS Appl. Mater. Interfaces, vol. 13, no. 6, 2021, doi: 10.1021/acsami.1c01089. [Google Scholar]
  51. I. Abánades Lázaro and R. S. Forgan, “Application of zirconium MOFs in drug delivery and biomedicine,” Coordination Chemistry Reviews, vol. 380. 2019. doi: 10.1016/j.ccr.2018.09.009. [Google Scholar]
  52. Y. Qi, S. Ren, Y. Che, J. Ye, and G. Ning, “Research Progress of Metal-Organic Frameworks Based Antibacterial Materials,” Acta Chimica Sinica, vol. 78, no. 7. 2020. doi: 10.6023/A20040126. [Google Scholar]
  53. A. Guo, M. Durymanov, A. Permyakova, S. Sene, C. Serre, and J. Reineke, “Metal Organic Framework (MOF) Particles as Potential Bacteria-Mimicking Delivery Systems for Infectious Diseases: Characterization and Cellular Internalization in Alveolar Macrophages,” Pharm. Res., vol. 36, no. 4, 2019, doi: 10.1007/s11095-019-2589-4. [Google Scholar]
  54. M. D. Firouzjaei, A. A. Shamsabadi, M. Sharifian Gh, A. Rahimpour, and M. Soroush, “A Novel Nanocomposite with Superior Antibacterial Activity: A Silver- Based Metal Organic Framework Embellished with Graphene Oxide,” Adv. Mater. Interfaces, vol. 5, no. 11, 2018, doi: 10.1002/admi.201701365. [CrossRef] [Google Scholar]
  55. W. C. Hu, M. R. Younis, Y. Zhou, C. Wang, and X. H. Xia, “In Situ Fabrication of Ultrasmall Gold Nanoparticles/2D MOFs Hybrid as Nanozyme for Antibacterial Therapy,” Small, vol. 16, no. 23, 2020, doi: 10.1002/smll.202000553. [Google Scholar]
  56. W. Zhao et al., “Antibacterial application and toxicity of metal–organic frameworks,” Nanotoxicology, vol. 15, no. 3. 2021. doi: 10.1080/17435390.2020.1851420. [Google Scholar]
  57. G. Wyszogrodzka, B. Marszałek, B. Gil, and P. Dorozyński, “Metal-organic frameworks: Mechanisms of antibacterial action and potential applications,” Drug Discovery Today, vol. 21, no. 6. 2016. doi: 10.1016/j.drudis.2016.04.009. [Google Scholar]
  58. W. Huang, F. Tao, F. Li, M. Mortimer, and L. H. Guo, “Antibacterial nanomaterials for environmental and consumer product applications,” NanoImpact, vol. 20. 2020. doi: 10.1016/j.impact.2020.100268. [CrossRef] [Google Scholar]
  59. Y. Li et al., “Strategy for chemotherapeutic delivery using a nanosized porous metal-organic framework with a central composite design,” Int. J. Nanomedicine, vol. 12, 2017, doi: 10.2147/IJN.S119115. [Google Scholar]
  60. R. T. Disler et al., “Factors impairing the postural balance in COPD patients and its influence upon activities of daily living,” Eur. Respir. J., vol. 15, no. 1, 2019. [Google Scholar]
  61. Y. Han et al., “Cyclodextrin-based metal-organic frameworks (CD-MOFs) in pharmaceutics and biomedicine,” Pharmaceutics, vol. 10, no. 4. 2018. doi: 10.3390/pharmaceutics10040271. [Google Scholar]
  62. W. Chen and C. Wu, “Synthesis, functionalization, and applications of metal- organic frameworks in biomedicine,” Dalton Transactions, vol. 47, no. 7. 2018. doi: 10.1039/c7dt04116k. [Google Scholar]
  63. R. Safdar Ali, H. Meng, and Z. Li, “Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing,” Molecules (Basel, Switzerland), vol. 27, no. 1. 2021. doi: 10.3390/molecules27010100. [CrossRef] [PubMed] [Google Scholar]
  64. M. de J. Velásquez-Hernández et al., “Towards applications of bioentities@MOFs in biomedicine,” Coordination Chemistry Reviews, vol. 429. 2021. doi: 10.1016/j.ccr.2020.213651. [Google Scholar]
  65. J. Yang and Y. W. Yang, “Metal–Organic Frameworks for Biomedical Applications,” Small, vol. 16, no. 10. 2020. doi: 10.1002/smll.201906846. [Google Scholar]
  66. M. X. Wu and Y. W. Yang, “Metal–Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy,” Advanced Materials, vol. 29, no. 23. 2017. doi: 10.1002/adma.201606134. [Google Scholar]
  67. B. Glimelius and L. Påhlman, “Cytostatic drug therapy in disseminated colorectal cancer,” Scand. J. Gastroenterol., vol. 23, no. S149, 1988, doi: 10.3109/00365528809096979. [Google Scholar]
  68. A. Hofmann, “Pharmacoeconomics of transfusion,” Appl. Cardiopulm. Pathophysiol., vol. 17, no. 2, 2013. [Google Scholar]
  69. H. A., “Pharmacoeconomics of transfusion,” Appl. Cardiopulm. Pathophysiol., vol. 17, no. 2, 2013. [Google Scholar]
  70. M. Hu et al., “Development of Metal-Organic Framework-Based Dual Antibody Nanoparticles for the Highly Specific Capture and Gradual Release of Circulating Tumor Cells,” Front. Bioeng. Biotechnol., vol. 10, 2022, doi: 10.3389/fbioe.2022.806238. [Google Scholar]
  71. D. Wang and Y. Zhao, “Single-atom engineering of metal-organic frameworks toward healthcare,” Chem, vol. 7, no. 10. 2021. doi: 10.1016/j.chempr.2021.08.020. [Google Scholar]
  72. S. Wang et al., “A novel pH-responsive Fe-MOF system for enhanced cancer treatment mediated by the Fenton reaction,” New J. Chem., vol. 45, no. 6, 2021, doi: 10.1039/d0nj05105e. [Google Scholar]
  73. P. Ji et al., “Hyaluronic acid-coated metal-organic frameworks benefit the ROS- mediated apoptosis and amplified anticancer activity of artesunate,” J. Drug Target., vol. 28, no. 10, 2020, doi: 10.1080/1061186X.2020.1781136. [Google Scholar]
  74. S. Mallakpour, E. Nikkhoo, and C. M. Hussain, “Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment,” Coordination Chemistry Reviews, vol. 451. 2022. doi: 10.1016/j.ccr.2021.214262. [CrossRef] [Google Scholar]
  75. M. Falahati, M. Sharifi, and T. L. M. T. Hagen, “Explaining chemical clues of metal organic framework-nanozyme nano-/micro-motors in targeted treatment of cancers: benchmarks and challenges,” Journal of Nanobiotechnology, vol. 20, no. 1. 2022. doi: 10.1186/s12951-022-01375-z. [CrossRef] [Google Scholar]
  76. X. Cai, X. Deng, Z. Xie, Y. Shi, M. Pang, and J. Lin, “Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc- MOF@polypyrrole core-shell nanohybrids for cancer therapy,” Chem. Eng. J., vol. 358, 2019, doi: 10.1016/j.cej.2018.10.044. [Google Scholar]
  77. L. Wang et al., “Exploiting Single Atom Iron Centers in a Porphyrin-like MOF for Efficient Cancer Phototherapy,” ACS Appl. Mater. Interfaces, vol. 11, no. 38, 2019, doi: 10.1021/acsami.9b11238. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.