Open Access
Issue |
E3S Web Conf.
Volume 588, 2024
Euro-Asian Conference on Sustainable Nanotechnology, Environment, & Energy (SNE2-2024)
|
|
---|---|---|
Article Number | 03026 | |
Number of page(s) | 16 | |
Section | Functional Materials and their Applications | |
DOI | https://doi.org/10.1051/e3sconf/202458803026 | |
Published online | 08 November 2024 |
- Lee, C. H., Padzil, F. N. B. M., Lee, S. H., Ainun, Z. M. A., & Abdullah, L. C. (2021). Potential for natural fiber reinforcement in pla polymer filaments for fused deposition modeling (Fdm) additive manufacturing: A review. In Polymers (Vol. 13, Issue 9). MDPI AG. https://doi.org/10.3390/polym13091407 [PubMed] [Google Scholar]
- Adekanye, A., Mahamood, R. M., Akinlabi, E. T., & Owolabi, M. G. (n.d.). Additive Manufacturing: The Future of Manufacturing Additive Manufacturing : Prihodnost Manufacturing. [Google Scholar]
- Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677–688. https://doi.org/10.1016/j.bushor.2017.05.011 [CrossRef] [Google Scholar]
- Bhatia, A., & Sehgal, A. K. (2021). Additive manufacturing materials, methods and applications: A review. Materials Today: Proceedings, 81(2), 1060–1067. https://doi.org/10.1016/j.matpr.2021.04.379 [Google Scholar]
- Gordelier, T. J., Thies, P. R., Turner, L., & Johanning, L. (2019). Optimising the FDM additive manufacturing process to achieve maximum tensile strength: a state-of-the-art review. In Rapid Prototyping Journal (Vol. 25, Issue 6, pp. 953–971). Emerald Group Holdings Ltd. https://doi.org/10.1108/RPJ-07-2018-0183 [CrossRef] [Google Scholar]
- Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. In Open Engineering (Vol. 11, Issue 1, pp. 639–649). De Gruyter Open Ltd. https://doi.org/10.1515/eng-2021-0063 [CrossRef] [Google Scholar]
- Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D Printing and Customized Additive Manufacturing. In Chemical Reviews (Vol. 117, Issue 15, pp. 10212–10290). American Chemical Society. https://doi.org/10.1021/acs.chemrev.7b00074 [CrossRef] [PubMed] [Google Scholar]
- Milosevic, M., Stoof, D., & Pickering, K. L. (2017). Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites. Journal of Composites Science, 1(1). https://doi.org/10.3390/jcs1010007 [CrossRef] [Google Scholar]
- Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. In Composites Part B: Engineering (Vol. 143, pp. 172–196). Elsevier Ltd. https://doi.org/10.1016/j.compositesb.2018.02.012 [CrossRef] [Google Scholar]
- Pereira, T., Kennedy, J. V., & Potgieter, J. (2019). A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manufacturing, 30, 11–18. https://doi.org/10.1016/j.promfg.2019.02.003 [CrossRef] [Google Scholar]
- Pérez, M., Carou, D., Rubio, E. M., & Teti, R. (2020). Current advances in additive manufacturing. Procedia CIRP, 88, 439–444. https://doi.org/10.1016/j.procir.2020.05.076 [CrossRef] [Google Scholar]
- Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. ISRN Mechanical Engineering, 2012, 1–10. https://doi.org/10.5402/2012/208760 [CrossRef] [Google Scholar]
- Babu, M., Raj, S. S., Kannan, T. K., & Vairavel, & M. (2019). PROCESSING AND TESTING PARAMETES OF PLA REINFORCED WITH NATURAL PLANT FIBER COMPOSITE MATERIALS-A BRIEF REVIEW. www.tjprc.org [Google Scholar]
- Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núñez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials and Design, 124, 143–157. https://doi.org/10.1016/j.matdes.2017.03.065 [CrossRef] [Google Scholar]
- Swetham, T., Madhana, K., Reddy, M., Huggi, A., & Kumar, M. N. (2017). A Critical Review on of 3D Printing Materials and Details of Materials used in FDM. 2(3), 353–361. [Google Scholar]
- Gunti, R., Ratna Prasad, A. V., & Gupta, A. V. S. S. K. S. (2018). Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass. Polymer Composites, 39(4), 1125–1136. https://doi.org/10.1002/pc.24041 [CrossRef] [Google Scholar]
- Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., Asyraf, M. R. M., Ishak, M. R., Razman, M. R., Nurazzi, N. M., Norrrahim, M. N. F., Abral, H., & Asrofi, M. (2021). Polylactic acid (Pla) biocomposite: Processing, additive manufacturing and advanced applications. In Polymers (Vol. 13, Issue 8). MDPI AG. https://doi.org/10.3390/polym13081326 [PubMed] [Google Scholar]
- Kamaal, M., Anas, M., Rastogi, H., Bhardwaj, N., & Rahaman, A. (2021). Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Progress in Additive Manufacturing, 6(1), 63–69. https://doi.org/10.1007/s40964-020-00145-3 [CrossRef] [Google Scholar]
- Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. In Bioresource Technology (Vol. 101, Issue 22, pp. 8493–8501). https://doi.org/10.1016/j.biortech.2010.05.092 [CrossRef] [PubMed] [Google Scholar]
- Mofokeng, J. P., Luyt, A. S., Tábi, T., & Kovács, J. (2012). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927–948. https://doi.org/10.1177/0892705711423291 [CrossRef] [Google Scholar]
- Mukherjee, T., & Kao, N. (2011). PLA Based Biopolymer Reinforced with Natural Fibre: A Review. Journal of Polymers and the Environment, 19(3), 714–725. https://doi.org/10.1007/s10924-011-0320-6 [CrossRef] [Google Scholar]
- Wang, L., & Gardner, D. J. (2018). Contribution of printing parameters to the interfacial strength of polylactic acid (PLA) in material extrusion additive manufacturing. Progress in Additive Manufacturing, 3(3), 165–171. https://doi.org/10.1007/s40964-018-0041-7 [CrossRef] [Google Scholar]
- Oksman, K., Skrifvars, M., & Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317–1324. https://doi.org/10.1016/S0266-3538(03)00103-9 [CrossRef] [Google Scholar]
- Plackett, D., Andersen, T. L., Pedersen, W. B., & Nielsen, L. (2003). Biodegradable composites based on L-polylactide and jute fibres. Composites Science and Technology, 63(9), 1287–1296. https://doi.org/10.1016/S0266-3538(03)00100-3 [CrossRef] [Google Scholar]
- Shih, Y. F., & Huang, C. C. (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. Journal of Polymer Research, 18(6), 2335–2340. https://doi.org/10.1007/s10965-011-9646-y [CrossRef] [Google Scholar]
- Siakeng, R., Jawaid, M., Ariffin, H., Sapuan, S. M., Asim, M., & Saba, N. (2019). Natural fiber reinforced polylactic acid composites: A review. In Polymer Composites (Vol. 40, Issue 2, pp. 446–463). John Wiley and Sons Inc. https://doi.org/10.1002/pc.24747 [CrossRef] [Google Scholar]
- Sun, J., Shen, J., Chen, S., Cooper, M. A., Fu, H., Wu, D., & Yang, Z. (2018). Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. In Polymers (Vol. 10, Issue 5). MDPI AG. https://doi.org/10.3390/polym10050505 [PubMed] [Google Scholar]
- Dong, Y., Milentis, J., & Pramanik, A. (2018). Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid) (PLA) and PLA/wood fibre composites. Advances in Manufacturing, 6(1), 71–82. https://doi.org/10.1007/s40436-018-0211-3 [CrossRef] [Google Scholar]
- Tokiwa, Y., & Calabia, B. P. (2006). Biodegradability and biodegradation of poly(lactide). In Applied Microbiology and Biotechnology (Vol. 72, Issue 2, pp. 244–251). https://doi.org/10.1007/s00253-006-0488-1 [CrossRef] [PubMed] [Google Scholar]
- Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. In Advanced Drug Delivery Reviews (Vol. 107, pp. 17–46). Elsevier B.V. https://doi.org/10.1016/j.addr.2016.04.003 [Google Scholar]
- Wojtyła, S., Klama, P., & Baran, T. (2017). Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. Journal of Occupational and Environmental Hygiene, 14(6), D80–D85. https://doi.org/10.1080/15459624.2017.1285489 [Google Scholar]
- Zhao, X., Tekinalp, H., Meng, X., Ker, D., Benson, B., Pu, Y., Ragauskas, A. J., Wang, Y., Li, K., Webb, E., Gardner, D. J., Anderson, J., & Ozcan, S. (n.d.). Poplar as biofiber reinforcement in composites for large-scale 3D printing. [Google Scholar]
- Campbell, M. D., & Coutts, R. S. P. (1980). Wood fibre-reinforced cement composites. In JOURNAL OF MATERIALS SCIENCE (Vol. 15). [Google Scholar]
- Das, A. K., Agar, D. A., Rudolfsson, M., & Larsson, S. H. (2021). A review on wood powders in 3D printing: processes, properties and potential applications. In Journal of Materials Research and Technology (Vol. 15, pp. 241–255). Elsevier Editora Ltda. https://doi.org/10.1016/j.jmrt.2021.07.110 [CrossRef] [Google Scholar]
- Huang, Y., Löschke, S., & Proust, G. (2021). In the mix: The effect of wood composition on the 3D printability and mechanical performance of wood-plastic composites. Composites Part C: Open Access, 5. https://doi.org/10.1016/j.jcomc.2021.100140 [CrossRef] [Google Scholar]
- Le Guen, M. J., Hill, S., Smith, D., Theobald, B., Gaugler, E., Barakat, A., & Mayer- Laigle, C. (2019). Influence of Rice Husk and Wood Biomass Properties on the Manufacture of Filaments for Fused Deposition Modeling. Frontiers in Chemistry, 7. https://doi.org/10.3389/fchem.2019.00735 [CrossRef] [PubMed] [Google Scholar]
- Narlıoğlu, N., Salan, T., & Hakkı Alma, M. (n.d.). Properties of 3D-Printed Wood Sawdust-Reinforced PLA Composites. [Google Scholar]
- Peltola, H., Pääkkönen, E., Jetsu, P., & Heinemann, S. (2014). Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties. Composites Part A: Applied Science and Manufacturing, 61, 13–22. https://doi.org/10.1016/j.compositesa.2014.02.002 [CrossRef] [Google Scholar]
- Petchwattana, N., Channuan, W., Naknaen, P., & Narupai, B. (2019). 3D printing filaments prepared from modified poly(lactic acid)/teak wood flour composites: An investigation on the particle size effects and silane coupling agent compatibilisation. Journal of Physical Science, 30(2), 169–188. https://doi.org/10.21315/jps2019.30.2.10 [CrossRef] [Google Scholar]
- Rajendran Royan, N. R., Leong, J. S., Chan, W. N., Tan, J. R., & Shamsuddin, Z. S. B. (2021). Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3d printing. In Polymers (Vol. 13, Issue 14). MDPI AG. https://doi.org/10.3390/polym13142289 [CrossRef] [PubMed] [Google Scholar]
- Tao, Y., Wang, H., Li, Z., Li, P., & Shi, S. Q. (2017). Development and application ofwood flour-filled polylactic acid composite filament for 3d printing. Materials, 10(4). https://doi.org/10.3390/ma10040339 [Google Scholar]
- Bulanda, K., Oleksy, M., Oliwa, R., Budzik, G., & Gontarz, M. (2020). Biodegradable polymer composites based on polylactide used in selected 3D technologies (Rapid communication). Polimery/Polymers, 65(7–8), 557–562. https://doi.org/10.14314/polimery.2020.7.8 [Google Scholar]
- Cobos, C. M., Garzón, L., López Martinez, J., Fenollar, O., & Ferrandiz, S. (2019). Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing. Rapid Prototyping Journal, 25(4), 738–743. https://doi.org/10.1108/RPJ-11-2018-0289 [CrossRef] [Google Scholar]
- Ilyas, R. A., Zuhri, M. Y. M., Aisyah, H. A., Asyraf, M. R. M., Hassan, S. A., Zainudin, E. S., Sapuan, S. M., Sharma, S., Bangar, S. P., Jumaidin, R., Nawab, Y., Faudzi, A. A. M., Abral, H., Asrofi, M., Syafri, E., & Sari, N. H. (2022). Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. In Polymers (Vol. 14, Issue 1). MDPI. https://doi.org/10.3390/polym14010202 [PubMed] [Google Scholar]
- Kaseem, M., & Ko, Y. G. (2017). Melt Flow Behavior and Processability of Polylactic Acid/Polystyrene (PLA/PS) Polymer Blends. Journal of Polymers and the Environment, 25(4), 994–998. https://doi.org/10.1007/s10924-016-0873-5 [CrossRef] [Google Scholar]
- Lee, C. H., Sapuan, S. M., Lee, J. H., & Hassan, M. R. (2016). Melt volume flow rate and melt flow rate of kenaf fibre reinforced Floreon/magnesium hydroxide biocomposites. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-3044-1 [PubMed] [Google Scholar]
- Manola, M. S., Singh, B., Singla, M. K., & Kumar, R. (2023). Investigation of melt flow index of dual metal reinforced ABS polymer for FDM filament fabrication. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.188 [Google Scholar]
- Singh, R., Fraternali, F., Farina, I., & Hashmi, M. S. J. (2018). Experimental Investigations for Development of Hybrid Feed Stock Filament of Fused Deposition Modeling. In Reference Module in Materials Science and Materials Engineering. Elsevier. https://doi.org/10.1016/b978-0-12-803581-8.10392-3 [Google Scholar]
- Turner, B. N., & Gold, S. A. (2015). A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. In Rapid Prototyping Journal (Vol. 21, Issue 3, pp. 250–261). Emerald Group Holdings Ltd. https://doi.org/10.1108/RPJ-02-2013-0017 [CrossRef] [Google Scholar]
- Turner, B. N., Strong, R., & Gold, S. A. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. In Rapid Prototyping Journal (Vol. 20, Issue 3, pp. 192–204). Emerald Group Publishing Ltd. https://doi.org/10.1108/RPJ-01-2013-0012 [CrossRef] [Google Scholar]
- Yang, S. lin, Wu, Z. H., Yang, W., & Yang, M. B. (2008). Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 27(8), 957–963. https://doi.org/10.1016/j.polymertesting.2008.08.009 [CrossRef] [Google Scholar]
- Zenkiewicz, M., Richert, J., Rytlewski, P., Moraczewski, K., Stepczyńska, M., & Karasiewicz, T. (2009). Characterisation of multi-extruded poly(lactic acid). Polymer Testing, 28(4), 412–418. https://doi.org/10.1016/j.polymertesting.2009.01.012 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.