Open Access
Issue |
E3S Web Conf.
Volume 588, 2024
Euro-Asian Conference on Sustainable Nanotechnology, Environment, & Energy (SNE2-2024)
|
|
---|---|---|
Article Number | 03027 | |
Number of page(s) | 15 | |
Section | Functional Materials and their Applications | |
DOI | https://doi.org/10.1051/e3sconf/202458803027 | |
Published online | 08 November 2024 |
- S. H. Huang, P. Liu, A. Mokasdar, and L. Hou, “Additive manufacturing and its societal impact: a literature review,” The International Journal of Advanced Manufacturing Technology, vol. 67, no. 5–8, pp. 1191–1203, Oct. (2012).doi: 10.1007/s00170-012-4558-5. [Google Scholar]
- M. Attaran, “The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing,” Business Horizons, vol. 60, no. 5, pp. 677–688, Sep. (2017).doi: 10.1016/j.bushor.2017.05.011. [CrossRef] [Google Scholar]
- A. Ben-Ner and E. Siemsen, “Decentralization and localization of production,” California Management Review, vol. 59, no. 2, pp. 5–23, Feb. (2017).doi: 10.1177/0008125617695284 [CrossRef] [Google Scholar]
- F. Calignano et al., “Overview on Additive manufacturing Technologies:The Organizational and Economic Consequences of Additive Manufacturing (3D Printing),” (2017). https://www.semanticscholar.org/paper/Overview-on-Additive-Manufacturing-Technologies- Calignano-Manfredi/e8217edd7376c26c714757a362724f81f3afbee0. [Google Scholar]
- T. Peng, K. Kellens, R. Tang, C. Chen, and G. Chen, “Sustainability of additive manufacturing: An overview on its energy demand and environmental impact,” Additive Manufacturing, vol. 21, pp. 694–704, May (2018), doi: 10.1016/j.addma.2018.04.022. [CrossRef] [Google Scholar]
- A. Majeed et al., “A big data-driven framework for sustainable and smart additive manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 67, p. 102026, Feb. (2021), doi: 10.1016/j.rcim.2020.102026. [CrossRef] [Google Scholar]
- L. A. Dobrzański and L. B. Dobrzański, “Dentistry 4.0 concept in the design and manufacturing of prosthetic dental restorations,” Processes, vol. 8, no. 5, p. 525, Apr. (2020), doi: 10.3390/pr8050525. [CrossRef] [Google Scholar]
- C. M. González-Henríquez, M. A. Sarabia-Vallejos, and J. Rodriguez-Hernandez, “Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications,” Progress in Polymer Science, vol. 94, pp. 57–116, Jul. (2019), doi: 10.1016/j.progpolymsci.2019.03.001. [CrossRef] [Google Scholar]
- D. Franco, G. M. D. Ganga, L. A. De Santa-Eulalia, and M. G. Filho, “Consolidated and inconclusive effects of additive manufacturing adoption: A systematic literature review,” Computers & Industrial Engineering, vol. 148, p. 106713, Oct. (2020), doi: 10.1016/j.cie.2020.106713. [CrossRef] [Google Scholar]
- M. A. G. Calle, M. Salmi, L. M. Mazzariol, M. Alves, and P. Kujala, “Additive manufacturing of miniature marine structures for crashworthiness verification: Scaling technique and experimental tests,” Marine Structures, vol. 72, p. 102764, Jul. (2020), doi: 10.1016/j.marstruc.2020.102764. [CrossRef] [Google Scholar]
- A. Kestilä et al., “Towards space-grade 3D-printed, ALD-coated small satellite propulsion components for fluidics,” Additive Manufacturing, vol. 22, pp. 31–37, Aug. (2018), doi: 10.1016/j.addma.2018.04.023. [CrossRef] [Google Scholar]
- M. Delic and D. R. Eyers, “The effect of additive manufacturing adoption on supply chain flexibility and performance: An empirical analysis from the automotive industry,” International Journal of Production Economics, vol. 228, p. 107689, Oct. (2020), doi: 10.1016/j.ijpe.2020.107689. [CrossRef] [Google Scholar]
- N. Kretzschmar, S. Chekurov, M. Salmi, and J. Tuomi, “Evaluating the readiness level of additively manufactured digital spare parts: An Industrial perspective,” Applied Sciences, vol. 8, no. 10, p. 1837, Oct. (2018), doi: 10.3390/app8101837. [CrossRef] [Google Scholar]
- I. Gibson and A. Srinath, “Simplifying medical additive manufacturing: making the surgeon the designer,” Procedia Technology, vol. 20, pp. 237–242, Jan. (2015), doi: 10.1016/j.protcy.2015.07.038. [CrossRef] [Google Scholar]
- G. N. Levy, R. Schindel, and J. P. Kruth, “RAPID MANUFACTURING AND RAPID TOOLING WITH LAYER MANUFACTURING (LM) TECHNOLOGIES, STATE OF THE ART AND FUTURE PERSPECTIVES,” CIRP Annals, vol. 52, no. 2, pp. 589–609, Jan. (2003), doi: 10.1016/s0007-8506(07)60206-6. [CrossRef] [Google Scholar]
- X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, “3D printing of polymer matrix composites: A review and prospective,” Composites Part B Engineering, vol. 110, pp. 442–458, Feb. (2017), doi: 10.1016/j.compositesb.2016.11.034. [CrossRef] [Google Scholar]
- N. Kumar, P. K. Jain, P. Tandon, and P. M. Pandey, “The effect of process parameters on tensile behavior of 3D printed flexible parts of ethylene vinyl acetate (EVA),” Journal of Manufacturing Processes, vol. 35, pp. 317–326, Oct. (2018), doi: 10.1016/j.jmapro.2018.08.013. [CrossRef] [Google Scholar]
- P. Bettini, G. Alitta, G. Sala, and L. Di Landro, “Fused deposition technique for continuous fiber reinforced thermoplastic,” Journal of Materials Engineering and Performance, vol. 26, no. 2, pp. 843–848, Dec. (2016), doi: 10.1007/s11665-016-2459-8. [Google Scholar]
- J. M. Gardner et al., “Additive manufacturing of multifunctional components using high density carbon nanotube yarn filaments,” NASA Technical Reports Server (NTRS), May 23, (2016). https://ntrs.nasa.gov/citations/20160009176 [Google Scholar]
- W. Zhong, F. Li, Z. Zhang, L. Song, and Z. Li, “Short fiber reinforced composites for fused deposition modeling,” Materials Science and Engineering A, vol. 301, no. 2, pp. 125–130, Mar. (2001), doi: 10.1016/s0921-5093(00)01810-4. [CrossRef] [Google Scholar]
- M. Ivey, G. W. Melenka, Jason. P. Carey, and C. Ayranci, “Characterizing short-fiber-reinforced composites produced using additive manufacturing,” Advanced Manufacturing Polymer & Composites Science, vol. 3, no. 3, pp. 81–91, Jun. (2017), doi: 10.1080/20550340.2017.1341125. [CrossRef] [Google Scholar]
- P. Parandoush and D. Lin, “A review on additive manufacturing of polymer-fiber composites,” Composite Structures, vol. 182, pp. 36–53, Dec. (2017), doi: 10.1016/j.compstruct.2017.08.088. [CrossRef] [Google Scholar]
- D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, “FDM process parameters influence over the mechanical properties of polymer specimens: A review,” Polymer Testing, vol. 69, pp. 157–166, Aug. (2018), doi: 10.1016/j.polymertesting.2018.05.020. [CrossRef] [Google Scholar]
- T. J. Horn and O. L. A. Harrysson, “Overview of current additive manufacturing technologies and selected applications,” Science Progress, vol. 95, no. 3, pp. 255–282, Sep. (2012), doi: 10.3184/003685012x13420984463047. [CrossRef] [PubMed] [Google Scholar]
- N. Guo and M. C. Leu, “Additive manufacturing: technology, applications and research needs,” Frontiers of Mechanical Engineering, vol. 8, no. 3, pp. 215–243, May (2013), doi: 10.1007/s11465-013-0248-8. [CrossRef] [Google Scholar]
- M. Vaezi, H. Seitz, and S. Yang, “A review on 3D micro-additive manufacturing technologies,” The International Journal of Advanced Manufacturing Technology, vol. 67, no. 5–8, pp. 1721–1754, Nov. (2012), doi: 10.1007/s00170-012-4605-2. [Google Scholar]
- B. N. Turner, R. Strong, and S. A. Gold, “A review of melt extrusion additive manufacturing processes: I. Process design and modeling,” Rapid Prototyping Journal, vol. 20, no. 3, pp. 192–204, Apr. (2014), doi: 10.1108/rpj-01-2013-0012. [CrossRef] [Google Scholar]
- T. M. Joseph et al., “3D printing of polylactic acid: recent advances and opportunities,” The International Journal of Advanced Manufacturing Technology, vol. 125, no. 3–4, pp. 1015–1035, Jan. (2023), doi: 10.1007/s00170-022-10795-y. [CrossRef] [PubMed] [Google Scholar]
- E. Baran and H. Erbil, “Surface modification of 3D printed PLA objects by fused deposition modeling: a review,” Colloids and Interfaces, vol. 3, no. 2, p. 43, Mar. (2019), doi: 10.3390/colloids3020043. [CrossRef] [Google Scholar]
- S. Wickramasinghe, T. Do, and P. Tran, “FDM-Based 3D printing of Polymer and associated composite: A review on mechanical properties, defects and treatments,” Polymers, vol. 12, no. 7, p. 1529, Jul. (2020), doi: 10.3390/polym12071529. [CrossRef] [Google Scholar]
- V. Mazzanti, L. Malagutti, and F. Mollica, “FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties,” Polymers, vol. 11, no. 7, p. 1094, Jun. (2019), doi: 10.3390/polym11071094. [CrossRef] [Google Scholar]
- B. Eling, S. Gogolewski, and A. J. Pennings, “Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres,” Polymer, vol. 23, no. 11, pp. 1587–1593, Oct. (1982), doi: 10.1016/0032-3861(82)90176-8. [CrossRef] [Google Scholar]
- K. Athanasiou, “Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/ polyglycolic acid copolymers,” Biomaterials, vol. 17, no. 2, pp. 93–102, Jan. (1996), doi: 10.1016/0142-9612(96)85754-1. [CrossRef] [Google Scholar]
- J. Lunt, “Large-scale production, properties and commercial applications of polylactic acid polymers,” Polymer Degradation and Stability, vol. 59, no. 1–3, pp. 145–152, Jan. (1998), doi: 10.1016/s0141-3910(97)00148-1. [CrossRef] [Google Scholar]
- R. E. Drumright, P. R. Gruber, and D. E. Henton, “Polylactic acid Technology,” Wiley Online Library, Dec. (2000), doi: 10.1002/1521-4095(200012)12:23. [Google Scholar]
- D. Garlotta, “A literature review of Poly(Lactic acid),” Journal of Polymers and the Environment, vol. 9, no. 2, pp. 63–84, Apr. (2001), doi: 10.1023/a:1020200822435. [CrossRef] [Google Scholar]
- R. Auras, B. Harte, and S. Selke, “An overview of polylactides as packaging materials,” Macromolecular Bioscience, vol. 4, no. 9, pp. 835–864, Aug. (2004), doi: 10.1002/mabi.200400043. [CrossRef] [PubMed] [Google Scholar]
- Y. Tokiwa and B. P. Calabia, “Biodegradability and biodegradation of poly(lactide),” Applied Microbiology and Biotechnology, vol. 72, no. 2, pp. 244–251, Jul. (2006), doi: 10.1007/s00253-006-0488-1. [CrossRef] [PubMed] [Google Scholar]
- B. Gupta, N. Revagade, and J. Hilborn, “Poly(lactic acid) fiber: An overview,” Progress in Polymer Science, vol. 32, no. 4, pp. 455–482, Apr. (2007), doi: 10.1016/j.progpolymsci.2007.01.005. [CrossRef] [Google Scholar]
- K. Haghsefat and L. Tingting, “FDM 3D printing technology and its fundemental properties,” ResearchGate,Jun.(2020),[Online].Available: https://www.researchgate.net/publication/3447686 24_FDM_3D_Printing_Technology_and_Its_Fundemental_Properties [Google Scholar]
- B. Jeon, J. W. Han, K. S. Lee, and S. W. Cha, “Improvement of the mechanical properties of biodegradable polymers using a microcellular foaming process and natural By-Products,” Polymer-Plastics Technology and Engineering, vol. 51, no. 4, pp. 401–406, Feb. (2012), doi: 10.1080/03602559.2011.639835. [CrossRef] [Google Scholar]
- Y. Tao, J. Shao, P. Li, and S. Q. Shi, “Application of a thermoplastic polyurethane/polylactic acid composite filament for 3D-printed personalized orthosis,” Materiali in Tehnologije, vol. 53, no. 1, pp. 71–76, Feb. (2019), doi: 10.17222/mit.2018.180. [CrossRef] [Google Scholar]
- M. Ł Mamiński, I. Novák, M. Mičušík, A. Małolepszy, and R. Toczyłowska-Mamińska, “Discharge Plasma Treatment as an Efficient Tool for Improved Poly(lactide) Adhesive–Wood Interactions,” Materials, vol. 14, no. 13, p. 3672, Jun. (2021), doi: 10.3390/ma14133672. [CrossRef] [Google Scholar]
- Y.-H. Lee et al., “Effect of hot pressing/melt mixing on the properties of thermoplastic polyurethane,” Macromolecular Research, vol. 17, no. 8, pp. 616–622, Aug. (2009), doi: 10.1007/bf03218918. [CrossRef] [Google Scholar]
- D. Tabuani, F. Bellucci, A. Terenzi, and G. Camino, “Flame retarded Thermoplastic Polyurethane (TPU) for cable jacketing application,” Polymer Degradation and Stability, vol. 97, no. 12, pp. 2594–2601, Dec. (2012), doi: 10.1016/j.polymdegradstab.2012.07.011. [CrossRef] [Google Scholar]
- M. Mrówka, M. Szymiczek, T. Machoczek, and M. Pawlyta, “Influence of the halloysite nanotube (HNT) addition on selected mechanical and biological properties of thermoplastic polyurethane,” Materials, vol. 14, no. 13, p. 3625, Jun. (2021), doi: 10.3390/ma14133625. [CrossRef] [Google Scholar]
- X. He et al., “Improved Dielectric Properties of Thermoplastic Polyurethane Elastomer Filled with Core–Shell Structured PDA@TiC Particles,” Materials, vol. 13, no. 15, p. 3341, Jul. (2020), doi: 10.3390/ma13153341. [CrossRef] [Google Scholar]
- M. A. Ruz-Cruz, P. J. Herrera-Franco, E. A. Flores-Johnson, M. V. Moreno-Chulim, L. M. Galera-Manzano, and A. Valadez-González, “Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites,” Journal of Materials Research and Technology, vol. 18, pp. 485–495, May (2022), doi: 10.1016/j.jmrt.2022.02.072. [CrossRef] [Google Scholar]
- N. Ayrilmis, “Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament,” Polymer Testing, vol. 71, pp. 163–166, Oct. (2018), doi: 10.1016/j.polymertesting.2018.09.009. [CrossRef] [Google Scholar]
- J. Girdis, L. Gaudion, G. Proust, S. Löschke, and A. Dong, “Rethinking Timber: Investigation into the Use of Waste Macadamia Nut Shells for Additive Manufacturing,” JOM, vol. 69, no. 3, pp. 575–579, Dec. (2016), doi: 10.1007/s11837-016-2213-6. [Google Scholar]
- A. L. Duigou, D. Correa, M. Ueda, R. Matsuzaki, and M. Castro, “A review of 3D and 4D printing of natural fibre biocomposites,” Materials & Design, vol. 194, p. 108911, Sep. (2020), doi: 10.1016/j.matdes.2020.108911. [CrossRef] [Google Scholar]
- N. R. R. Royan, J. S. Leong, W. N. Chan, J. R. Tan, and Z. S. B. Shamsuddin, “Current state and Challenges of Natural Fibre-Reinforced Polymer Composites as feeder in FDM-Based 3D printing,” Polymers, vol. 13, no. 14, p. 2289, Jul. (2021), doi: 10.3390/polym13142289. [CrossRef] [Google Scholar]
- D. Deb and J. M. Jafferson, “Natural fibers reinforced FDM 3D printing filaments,” Materials Today Proceedings, vol. 46, pp. 1308–1318, Jan. (2021), doi: 10.1016/j.matpr.2021.02.397. [CrossRef] [Google Scholar]
- J. Suteja, H. Firmanto, A. Soesanti, and C. Christian, “Properties investigation of 3D printed continuous pineapple leaf fiber-reinforced PLA composite,” Journal of Thermoplastic Composite Materials, vol. 35, no. 11, pp. 2052–2061, Jul. (2020), doi: 10.1177/0892705720945371. [Google Scholar]
- Y. Tao, H. Wang, Z. Li, P. Li, and S. Q. Shi, “Development and application of Wood Flour-Filled Polylactic Acid Composite filament for 3D printing,” Materials, vol. 10, no. 4, p. 339, Mar. (2017), doi: 10.3390/ma10040339. [CrossRef] [Google Scholar]
- H. Liu, H. He, X. Peng, B. Huang, and J. Li, “Three‐dimensional printing of poly(lactic acid) bio‐ based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance,” Polymers for Advanced Technologies, vol. 30, no. 4, pp. 910–922, Jan. (2019), doi: 10.1002/pat.4524. [CrossRef] [Google Scholar]
- M. A. Osman and M. R. A. Atia, “Investigation of ABS-rice straw composite feedstock filament for FDM,” Rapid Prototyping Journal, vol. 24, no. 6, pp. 1067–1075, Sep. (2018), doi: 10.1108/rpj-11-2017-0242. [CrossRef] [Google Scholar]
- M. Milosevic, D. Stoof, and K. L. Pickering, “Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites,” Journal of Composites Science, vol. 1, no. 1, p. 7, Jul. (2017), doi: 10.3390/jcs1010007. [CrossRef] [Google Scholar]
- J. Šafka, M. Ackermann, J. Bobek, M. Seidl, J. Habr, and L. Bĕhálek, “Use of composite materials for FDM 3D print technology,” Materials Science Forum, vol. 862, pp. 174–181, Aug. (2016), doi: 10.4028/www.scientific.net/msf.862.174. [CrossRef] [Google Scholar]
- C. Dong, “Review of natural fibre-reinforced hybrid composites,” Journal of Reinforced Plastics and Composites, vol. 37, no. 5, pp. 331–348, Dec. (2017), doi: 10.1177/0731684417745368. [Google Scholar]
- M. Y. Khalid, Z. U. Arif, W. Ahmed, and H. Arshad, “Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials,” Sustainable Materials and Technologies, vol. 31, p. e00382, Apr. (2022), doi: 10.1016/j.susmat.2021.e00382. [CrossRef] [Google Scholar]
- N. Angin, S. Caylak, M. Ertas, and A. D. Cavdar, “Effect of alkyl ketene dimer on chemical and thermal properties of polylactic acid (PLA) hybrid composites,” Sustainable Materials and Technologies, vol. 32, p. e00386, Jul. (2022), doi: 10.1016/j.susmat.2021.e00386. [CrossRef] [Google Scholar]
- V. K. Patel and N. Rawat, “Physico-mechanical properties of sustainable Sagwan-Teak Wood Flour/Polyester Composites with/without gum rosin,” Sustainable Materials and Technologies, vol. 13, pp. 1–8, Sep. (2017), doi: 10.1016/j.susmat.2017.05.002. [CrossRef] [Google Scholar]
- F. M. Al-Oqla, M. T. Hayajneh, and M. M. Al-Shrida, “Mechanical performance, thermal stability and morphological analysis of date palm fiber reinforced polypropylene composites toward functional bio-products,” Cellulose, vol. 29, no. 6, pp. 3293–3309, Mar. (2022), doi: 10.1007/s10570-022-04498-6. [CrossRef] [Google Scholar]
- P. B. Kajjari, L. S. Manjeshwar, and T. M. Aminabhavi, “Novel blend microspheres of cellulose triacetate and bee wax for the controlled release of nateglinide,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 2, pp. 397–404, Mar. (2014), doi: 10.1016/j.jiec.2013.04.034. [CrossRef] [Google Scholar]
- F. Doronin, A. Rudakova, G. Rytikov, and V. Nazarov, “A novel determination of the melt flow index of composite filaments used in extrusion additive manufacturing,” Polymer Testing, p. 108376, Feb. (2024), doi: 10.1016/j.polymertesting.2024.108376. [Google Scholar]
- M. Alaa et al., “Fundamental study and modification of Kenaf fiber reinforced polylactic acid bio-composite for 3D printing filaments,” Materials Today Proceedings, Mar. (2023). doi: 10.1016/j.matpr.2023.03.328. [Google Scholar]
- Y. Du, T. Wu, N. Yan, M. T. Kortschot, and R. Farnood, “Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites,” Composites Part B Engineering, vol. 56, pp. 717–723, Jan. (2014), doi: 10.1016/j.compositesb.2013.09.012. [CrossRef] [Google Scholar]
- T. Mokhena, J. Sefadi, E. Sadiku, M. John, M. Mochane, and A. Mtibe, “Thermoplastic processing of PLA/Cellulose nanomaterials composites,” Polymers, vol. 10, no. 12, p. 1363, Dec. (2018), doi: 10.3390/polym10121363. [CrossRef] [Google Scholar]
- A. K. Trivedi, M. K. Gupta, and H. Singh, “PLA based biocomposites for sustainable products: A review,” Advanced Industrial and Engineering Polymer Research, vol. 6, no. 4, pp. 382–395, Oct. (2023), doi: 10.1016/j.aiepr.2023.02.002. [CrossRef] [Google Scholar]
- H. J. Aida, R. Nadlene, M. T. Mastura, L. Yusriah, D. Sivakumar, and R. A. Ilyas, “Natural fibre filament for Fused Deposition Modelling (FDM): a review,” International Journal of Sustainable Engineering, vol. 14, no. 6, pp. 1988–2008, Aug. (2021), doi: 10.1080/19397038.2021.1962426. [CrossRef] [Google Scholar]
- L. Kerni, S. Singh, A. Patnaik, and N. Kumar, “A review on natural fiber reinforced composites,” Materials Today Proceedings, vol. 28, pp. 1616–1621, Jan. (2020), doi: 10.1016/j.matpr.2020.04.851. [CrossRef] [Google Scholar]
- D. Veeman, M. K. Subramaniyan, G. J. Surendhar, and M. Alruqi, “A novel material for sustainable environment: processing, additive manufacturing, and characterization,” Journal of Materials Engineering and Performance, vol. 33, no. 14, pp. 7368–7377, Jun. (2023), doi: 10.1007/s11665-023-08458-4. [Google Scholar]
- B. Singh et al., “Investigations on melt flow rate and tensile behaviour of Single, Double and Triple-Sized Copper reinforced thermoplastic composites,” Materials, vol. 14, no. 13, p. 3504, Jun. (2021), doi: 10.3390/ma14133504. [CrossRef] [Google Scholar]
- M. S. Manola, B. Singh, M. K. Singla, and R. Kumar, “Investigation of melt flow index of dual metal reinforced ABS polymer for FDM filament fabrication,” Materials Today Proceedings, Feb. (2023), doi: 10.1016/j.matpr.2023.02.188. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.