Open Access
Issue
E3S Web Conf.
Volume 592, 2024
International Scientific Conference Energy Management of Municipal Facilities and Environmental Technologies (EMMFT-2024)
Article Number 05024
Number of page(s) 7
Section Mining, Geology, Geodesy, and Environmental Monitoring
DOI https://doi.org/10.1051/e3sconf/202459205024
Published online 20 November 2024
  1. M. Soori, B. Arezoo, R. Dastres, Internet of Things and Cyber-Physical Systems 3, 192 (2023). [CrossRef] [Google Scholar]
  2. S. K. Baduge, S. Thilakarathna, J. S. Perera, M. Arashpour, P. Sharafi, B. Teodosio, A. Shringi, P. Mendis, Automation in Construction 141, 104440 (2022). [CrossRef] [Google Scholar]
  3. P. M. Pivkin, Petr M, Digital twin of the technological process for grinding helical flutes of a cutting tool, in Real-Time Processing of Image, Depth, and Video Information 2024 SPIE, Strasbourg, France, (2024). [Google Scholar]
  4. K. Hippalgaonkar, Q. Li, X. Wang, J. W. Fisher, J. Kirkpatrick, T. Buonassisi, Nat Rev Mater 8, 241 (2023). [CrossRef] [Google Scholar]
  5. Z. You, L. Feng, IEEE Access 8, 122908 (2020). [CrossRef] [Google Scholar]
  6. M. Q. Tran, M. Elsisi, M. K. Liu, V. Q. Vu, K. Mahmoud, M. M. F. Darwish, A. Y. Abdelaziz, M. Lehtonen, Reliable Deep Learning andloT-BasedMonitoring System for Secure Computer Numerical Control Machines Against Cyber-Attacks With Experimental Verification, in IEEE Access 10, 23186 (2022). [CrossRef] [Google Scholar]
  7. M. Elsisi, K. Mahmoud, M. Lehtonen, M. M. F. Darwish, Sensors 21, 487 (2021). [Google Scholar]
  8. M. Forootan, J. Akbari, M. Ghorbani, Int J Adv Manuf Technol 129, 2949 (2023). [CrossRef] [Google Scholar]
  9. H. T. Yau, S. Y. Wang, H. C. Chang, C. H. Chang, Int J Adv Manuf Technol 119, 6967 (2022). [CrossRef] [Google Scholar]
  10. V. A. Grechishnikov, Yu. E. Petukhov, P. M. Pivkin, A. V. Isaev, S. V. Bushuev, V. B. Romanov, Meas Tech 58, 848 (2015). [CrossRef] [Google Scholar]
  11. H. Jamshidi, E. Budak, J Intell Manuf 35, 161 (2024). [CrossRef] [Google Scholar]
  12. M. Salehi, P. Albertelli, M. Goletti, F. Ripamonti, G. Tomasini, M. Monno, Procedía CIRP 33, 239 (2015). [CrossRef] [Google Scholar]
  13. M. Zhang, F. Tao, Y. Zuo, F. Xiang, L. Wang, A. Y. C. Nee, Journal of Manufacturing Systems 71, 158 (2023). [CrossRef] [Google Scholar]
  14. J. Shi, Y. Chen, A. A. Heidari, Z. Cai, H. Chen, Y. Chen, G. Liang, Sci Rep 14, 15701 (2024). [CrossRef] [PubMed] [Google Scholar]
  15. P. M. Pivkin, A. B. Nadykto, V. A. Grechishnikov, M. A. Volosova, I. V. Minin, S. N. Grigoriev, A new method for modeling edges of a toroidal cutting surface of solid ceramic end mills, in Emerging Imaging and Sensing Technologies for Security and Defence V; Advanced Manufacturing Technologies for Micro- and Nanosystems in Security and Defence III, SPIE, Online Only, United Kingdom, (2020), p. 50 [Google Scholar]
  16. S. N. Grigoriev, M. S. Migranov, S. R. Shekhtman, A. M. Migranov, A. A. Ershov, P. M. Pivkin, Sensor information processing in the control of quality parameters of functional coatings of products deposited by vacuum-arc spraying, in SPIE Future Sensing Technologies, SPIE, Online Only, Japan, (2021). [Google Scholar]
  17. P. M. Pivkin, V. A. Grechishnikov, I. V. Minin, A. A. Ershov, V. Voronin, A. B. Nadykto, S. N. Grigoriev, A new approach for controlling of curved cutting edges of toroid-shaped end-milling cutter, in Dimensional Optical Metrology and Inspection for Practical Applications X, SPIE, Online Only, United States, (2021). [Google Scholar]
  18. A. Metel, Y. Melnik, E. Mustafaev, I. Minin, P. Pivkin, Coatings 11, 465 (2021) [CrossRef] [Google Scholar]
  19. P. M. Pivkin, V. A. Grechishnikov, A. A. Ershov, M. A. Volosova, A. B. Nadykto, Reverse engineering of geometric models of advanced curved edge drills using optical measuring systems, in Technologies for Optical Countermeasures XVIII and High Power Lasers: Technology and Systems, Platforms, Effects V, SPIE, Spain (2021) [Google Scholar]
  20. P. M. Pivkin, A. A. Ershov, A. B. Nadykto, New image processing algorithm to recognition of the profile of micro-mills, in Optical Metrology and Inspection for Industrial Applications IX, SPIE, China (2022) [Google Scholar]
  21. P. M. Pivkin, A. M. Yazev, A. A. Ershov, L. A. Uvarova, A. B. Nadykto, A new method and practical recommendations for measuring geometric accuracy, linear and angular measurements of helical surfaces of end mill for/HSM, in Optics, Photonics, and Digital Technologies for Imaging Applications VIII, SPIE, Strasbourg, France, (2024). [Google Scholar]
  22. J. Chen, S. Li, H. Teng, X. Leng, C. Li, R. Kurniawan, T. J. Ko, Digital twin-driven real-time suppression of delamination damage in CFRP drilling, in J Intell Manuf (2024). [Google Scholar]
  23. Z. Cao, T. Huang, H. Zhang, B. Wu, X. M. Zhang, H. Ding, A deep learning model for online prediction of in-process dynamic characteristics of thin-walled complex blade machining, in J Intell Manuf (2024). [Google Scholar]
  24. T. Bergs, D. Biermann, K. Erkorkmaz, R. M’Saoubi, CIRP Annals 72, 541 (2023). [CrossRef] [Google Scholar]
  25. L. Bai, J. Zhang, J. Yan, L. N. López De Lacalle, J. Muñoa, Cutting model integrated digital twin-based process monitoring in small-batch machining, in Int J Adv Manuf Technol (2024). [Google Scholar]
  26. P. Bakhshandeh, Y. Mohammadi, Y. Altintas, F. Bleicher, CIRP Journal of Manufacturing Science and Technology 49, 180 (2024). [CrossRef] [Google Scholar]
  27. V. Grechishnikov, S. Grigoriev, P. Pivkin, M. Volosova, A. Isaev, D. Nikitin, I. Minin, EPJ Web Conf. 224, 05001 (2019). [Google Scholar]
  28. S. N. Grigoriev, M. A. Volosova, A. A. Okunkova, S. V. Fedorov, K. Hamdy, P. A. Podrabinnik, P. M. Pivkin, M. P. Kozochkin, A. N. Porvatov, JMMP 4, 96 (2020). [CrossRef] [Google Scholar]
  29. S. N. Grigoriev, P. M. Pivkin, M. P. Kozochkin, M. A. Volosova, A. A. Okunkova, A. N. Porvatov, A. A. Zelensky, A. B. Nadykto, Metals 11, 1865 (2021). [CrossRef] [Google Scholar]
  30. U. A. Dabade, S. S. Karidkar, Procedia CIRP 41, 886 (2016). [CrossRef] [Google Scholar]
  31. M. H. Tsai, T. H. Chen, J. N. Lee, T. L. Hsu, D. K. Huang, Applied Sciences 14, 4015 (2024). [CrossRef] [Google Scholar]
  32. T. F. Qi, H. R. Fang, Y. F. Chen, L. T. He, J Intell Manuf 35, 977 (2024). [CrossRef] [Google Scholar]
  33. A. Hanel, E. Wenkler, T. Schnellhardt, C. Corinth, A. Brosius, A. Fay, A. Nestler, MM SJ 2019, 3148 (2019). [CrossRef] [Google Scholar]
  34. I. Onaji, D. Tiwari, P. Soulatiantork, B. Song, A. Tiwari, International Journal of Computer Integrated Manufacturing 35, 831 (2022). [CrossRef] [Google Scholar]
  35. B. Denkena, M. A. Dittrich, H. Noske, D. Stoppel, D. Lange, CIRP Journal of Manufacturing Science and Technology 35, 795 (2021). [CrossRef] [Google Scholar]
  36. D. Aslan, Y. Altintas, International Journal of Machine Tools and Manufacture 132, 64 (2018). [CrossRef] [Google Scholar]
  37. K. Zhu, G. Li, Y. Zhang, IEEE Trans. Ind. Inf. 16, 4007 (2020). [Google Scholar]
  38. W. Shan, X. He, H. Liu, A. A. Heidari, M. Wang, Z. Cai, H. Chen, Journal of Computational Design and Engineering 10, 503 (2023). [CrossRef] [Google Scholar]
  39. J. Li, G. Zhou, C. Zhang, J. Hu, F. Chang, A. Matta, Defining a feature-level digital twin process model by extracting machining features from MBD models for intelligent process planning, in J Intell Manuf (2024). [Google Scholar]
  40. Y. Lu, H. Ma, Z. Zhang, L. Jiang, Y. Sun, Q. Song, Z. Liu, Int J Adv Manuf Technol 130, 3275 (2024). [CrossRef] [Google Scholar]
  41. Q. Chen, C. Zhang, T. Hu, Y. Zhou, H. Ni, T. Wang, Int J Adv Manuf Technol 117, 555 (2021). [CrossRef] [Google Scholar]
  42. A. Hanel, A. Seidel, U. Frieh, U. Teicher, H. Wiemer, D. Wang, E. Wenkler, L. Penter, A. Hellmich, S. Ihlenfeldt, JMMP 5, 80 (2021) [CrossRef] [Google Scholar]
  43. C. Zhang, G. Zhou, Y. Jing, R. Wang, F. Chang, IEEE Access 10, 80784 (2022). [CrossRef] [Google Scholar]
  44. J. Liu, H. Zhou, X. Liu, G. Tian, M. Wu, L. Cao, W. Wang, IEEE Access 7, 19312 (2019). [CrossRef] [Google Scholar]
  45. Y. Ye, T. Hu, C. Zhang, W. Luo, Int J Adv Manuf Technol 94, 3413 (2018). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.