Open Access
Issue
E3S Web Conf.
Volume 483, 2024
The 3rd International Seminar of Science and Technology (ISST 2023)
Article Number 03004
Number of page(s) 13
Section Trends in Mathematics and Computer Science for Sustainable Living
DOI https://doi.org/10.1051/e3sconf/202448303004
Published online 31 January 2024
  1. S. Kak, “Quantum Mechanics and Artificial Intelligence,” in Intelligent Computing Everywhere, London, Springer, pp. 81–101, (2007). https://doi.org/10.1007/978-1-84628-943-9_5 [CrossRef] [Google Scholar]
  2. A. Ajagekar and F. You, “Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality,” Renewable and Sustainable Energy Reviews, vol. 165, no. 6, (2022). https://doi.org/10.1016/j.rser.2022.112493. [CrossRef] [Google Scholar]
  3. O. Bratelli and D. W. Robinson, Operator algebras and quantum statistical mechanics: Volume 1: C*-and W*-Algebras. Symmetry Groups. Decomposition of States, (New York, Springer Science & Business Media, 2012). [Google Scholar]
  4. J.-B. Bru and W. A. d. S. Pedra., C*-Algebras and Mathematical Foundations of Quantum Statistical Mechanics: An Introduction, (Switzerland, Springer Nature, 2023). [CrossRef] [Google Scholar]
  5. Raeburn, Graph Algebras, (Washington DC, The American Mathematical Society, 2005). [Google Scholar]
  6. W. Hidayat, “Unique Representation of C*-Algebra of Row-Finite Directed Graph,” in Accelerating Sustainable Inovation Towards Society 5.0, pp. 185–212, (Tangerang Selatan, Universitas Terbuka, 2022). [Google Scholar]
  7. R. Strung, “C*-algebra basics,” in An Introduction to C*-Algebras and the Classification Program, p. 14–25, (Barcelona, Birkhäuser, Cham, 2021). [Google Scholar]
  8. F. Putnam, “University of Victoria,” 3 Januari 2019. [Online]. Available: https://www.math.uvic.ca/faculty/putnam/ln/C*-algebras.pdf. [Accessed 14 June 2022]. [Google Scholar]
  9. Tuset, “Operators on Hilbert Spaces.,” in Analysis and Quantum Groups, p. 95–129, (Switzerland, Springer, Cham, 2023). [Google Scholar]
  10. L. Arias and M. C. Gonzalez, “Products of projections and self-adjoint operators,” in Linear Algebra and its Applications, pp. 70–83, (Science Direct, 2018). [CrossRef] [Google Scholar]
  11. Cho and P. Jorgensen, “C -algebras generated by partial isometries,” Journal of Applied Mathematics and Computing, vol. 26(1), pp. 1–48, (2017). doi: 10.1007/s12190-007-0009-0 [Google Scholar]
  12. Ashraf, V. D. Phillips and M. A. Siddeeque, Advanced Linear Algebra with Applications, (Singapore, Springer, 2022). [CrossRef] [Google Scholar]
  13. B. Michael, C. Voigt and M. Weber, “Quantum cuntz-krieger algebras,” Transactions of the American Mathematical Society, Series B, vol. 9(26), pp. 782–826, (2022). https://doi.org/10.1090/btran/88 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.