Open Access
Issue |
E3S Web Conf.
Volume 483, 2024
The 3rd International Seminar of Science and Technology (ISST 2023)
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 10 | |
Section | Trends in Mathematics and Computer Science for Sustainable Living | |
DOI | https://doi.org/10.1051/e3sconf/202448303014 | |
Published online | 31 January 2024 |
- J. Wind and V. Mahajan, “Digital Marketing,” Symphonya. Emerging Issues in Management, no. 1, pp. 43–54, Jun. 2002, doi: 10.4468/2002.1.04wind.mahajan. [Google Scholar]
- A. Sawicki, “Digital Marketing,” World Scientific News, vol. 48, pp. 82–88, 2016, [Online]. Available: www.worldscientificnews.com [Google Scholar]
- Vaibhava Desai, “Digital Marketing: A Review,” International Journal of Trend in Scientific Research and Development (IJTSRD), pp. 196–200, 2019. [CrossRef] [Google Scholar]
- A. Murgai, “Transforming Digital Marketing with Artificial Intelligence,” 2018. [Online]. Available: www.ijltemas.in [Google Scholar]
- S. A. A. Kharis and A. H. A. Zili, “Learning Analytics dan Educational Data Mining pada Data Pendidikan,” Jurnal Riset Pembelajaran Matematika Sekolah, vol. 6, 2022. [Google Scholar]
- A. Pannu and M. T. Student, “Artificial Intelligence and its Application in Different Areas,” 2008. [Google Scholar]
- Z. Rustam and S. A. A. Kharis, “Multiclass classification on brain cancer with multiple support vector machine and feature selection based on kernel function,” in AIP Conference Proceedings, American Institute of Physics Inc., Oct. 2018. doi: 10.1063/1.5064230. [Google Scholar]
- Z. Rustam and S. A. A. Kharis, “Comparison of Support Vector Machine Recursive Feature Elimination and Kernel Function as feature selection using Support Vector Machine for lung cancer classification,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jan. 2020. doi: 10.1088/1742-6596/1442/1/012027. [Google Scholar]
- S. A. A. Kharis, I. Hadi, and K. A. Hasanah, “Multiclass Classification of Brain Cancer with Multiple Multiclass Artificial Bee Colony Feature Selection and Support Vector Machine,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Dec. 2019. doi: 10.1088/1742-6596/1417/1/012015. [Google Scholar]
- Alhadi Bustamam, Zuherman Rustam, Selly A. A. K, Nyoman A. Wibawa, Devvi Zarwinda, and Nadya Asanul Husna, “Lung cancer classification based on support vector machine-recursive feature elimination and artificial bee colony,” Annals of Mathematical Modeling, vol. 3, no. 1, pp. 1–13, Jun. 2023, doi: 10.33292/amm.v3i1.26. [CrossRef] [Google Scholar]
- S. A. A. Kharis, G. F. Hertono, S. R. Irawan, E. Wahyuningrum, and Yumiati, “Students’ success prediction based on the Fuzzy K-Nearest Neighbor method in Universitas Terbuka,” Education Technology in the New Normal: Now and Beyond, pp. 212–218, Jun. 2023, doi: 10.1201/9781003353423-22. [CrossRef] [Google Scholar]
- A. Haqqi et al., “Peramalan Harga Saham Dengan Model Hybrid Arima-Garch dan Metode Walk Forward, [Stock Price Forecasting Using the Hybrid Arima-Garch Model and Walk Forward Method]” Jurnal Statistika dan Aplikasinya, vol. 6, no. 2, 2022. [Google Scholar]
- E. Mogaji, T. O. Soetan, and T. A. Kieu, “The implications of artificial intelligence on the digital marketing of financial services to vulnerable customers,” https://doi.org/10.1016/j.ausmj.2020.05.003, vol. 29, no. 3, pp. 235–242, Aug. 2020, doi: 10.1016/J.AUSMJ.2020.05.003. [Google Scholar]
- K. G. Nalbant and S. Aydin, “Development and Transformation in Digital Marketing and Branding with Artificial Intelligence and Digital Technologies Dynamics in the Metaverse Universe,” Journal of Metaverse, vol. 3, no. 1, pp. 9–18, 2023, doi: 10.57019/jmv.1148015. [CrossRef] [Google Scholar]
- A. Al Ayub Ahmed, S. Rajesh, S. Lohana, S. Ray, J. P. Maroor, and M. Naved, “Using Machine Learning and Data Mining to Evaluate Modern Financial Management Techniques,” in Smart Innovation, Systems and Technologies, Springer Science and Business Media Deutschland GmbH, 2023, pp. 249–257. doi: 10.1007/978-981-190108-9_26. [CrossRef] [Google Scholar]
- N. R. Azkiya, J. Mahroza, A. Rishdianto, and Z. Almubaroq, “Analysis of The Impact of Social Media on The Political Participation of Indonesian Youth in The Perspective of Defense Management 1,” Nusantara: Jurnal Ilmu Pengetahuan Sosial, vol. 10, no. 7, pp. 3533–3545, 2023, doi: 10.31604/jips.v10i7.2023. [Google Scholar]
- Badan Pusat Statistik, “Jumlah Penduduk menurut Wilayah, Klasifikasi Generasi, dan Jenis Kelamin, di INDONESIA Dataset Sensus Penduduk 2020 Badan Pusat Statistik.” https://sensus.bps.go.id/topik/tabular/sp2020/2/0/0 (accessed Sep. 19, 2023). [Google Scholar]
- Strauss, Anselm, and Juliet Corbin, “Penelitian Kualitatif, [Qualitative Research]” in Penelitian Kualitatif, 2023, pp. 157–165. [Google Scholar]
- K. T. Smith, “Longitudinal Study of Digital Marketing Strategies Targeting Millennials,” 2012. [Google Scholar]
- K. Nair and R. Gupta, “Application of AI technology in modern digital marketing environment,” World Journal of Entrepreneurship, Management and Sustainable Development, vol. 17, no. 3, pp. 318–328, 2020, doi: 10.1108/WJEMSD-08-2020-0099. [Google Scholar]
- X. Liu, H. Shin, and A. C. Burns, “Examining the impact of luxury brand’s social media marketing on customer engagement: Using big data analytics and natural language processing,” J Bus Res, vol. 125, pp. 815–826, Mar. 2021, doi: 10.1016/j.jbusres.2019.04.042. [CrossRef] [Google Scholar]
- B. Panth and R. Maclean, “Anticipating and Preparing for Emerging Skills and Jobs,” 2020. [Online]. Available: http://www.springer.com/series/5888 [CrossRef] [Google Scholar]
- C. Chun Ho, H. L. Lee, W. K. Lo, and K. F. A. Lui, “Developing a Chatbot for College Student Programme Advisement,” Proceedings 2018 International Symposium on Educational Technology, ISET 2018, pp. 52–56, Sep. 2018, doi: 10.1109/ISET.2018.00021. [Google Scholar]
- M. A. Camilleri, “The use of data-driven technologies for customer-centric marketing,” International Journal of Big Data Management, vol. 1, no. 1, p. 50, 2020, doi: 10.1504/ijbdm.2020.106876. [CrossRef] [Google Scholar]
- L. Yu, Y. Zhao, L. Tang, and Z. Yang, “Online big data-driven oil consumption forecasting with Google trends,” Int J Forecast, vol. 35, no. 1, pp. 213–223, Jan. 2019, doi: 10.1016/J.IJFORECAST.2017.11.005. [CrossRef] [Google Scholar]
- B. Biegel, “The current view and outlook for the future of marketing automation,” Journal of Direct, Data and Digital Marketing Practice, vol. 10, no. 3. pp. 201–213, Jan. 2009. doi: 10.1057/dddmp.2008.37. [CrossRef] [Google Scholar]
- M. O. Olomu, “Marketing automation innovation practices and customer retention performance: Evidence from the Nigerian manufacturing SMEs,” International Journal of Business Performance Management, vol. 20, no. 3, pp. 212–228, 2019, doi: 10.1504/IJBPM.2019.101999. [CrossRef] [Google Scholar]
- A. Erdmann, R. Arilla, and J. M. Ponzoa, “Search engine optimization: The long-term strategy of keyword choice,” J Bus Res, vol. 144, pp. 650–662, May 2022, doi: 10.1016/J.JBUSRES.2022.01.065. [CrossRef] [Google Scholar]
- D. Mladenović, A. Rajapakse, N. Kožuljević, and Y. Shukla, “Search engine optimization (SEO) for digital marketers: exploring determinants of online search visibility for blood bank service,” Online Information Review, Jul. 2022, doi: 10.1108/OIR-05-2022-0276. [Google Scholar]
- Z. Somosi, N. Hajdú, and L. Molnár, “Targeting in Online Marketing: A Retrospective Analysis with a Focus on Practices of Facebook, Google, LinkedIn and TikTok,” European Journal of Business and Management Research, vol. 8, no. 1, pp. 33–39, Jan. 2023, doi: 10.24018/ejbmr.2023.8.1.1724. [Google Scholar]
- P. K. Theodoridis and D. C. Gkikas, “How Artificial Intelligence Affects Digital Marketing,” in Springer Proceedings in Business and Economics, Springer Science and Business Media B.V., 2019, pp. 1319–1327. doi: 10.1007/978-3-030-12453-3_151. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.