Open Access
Issue |
E3S Web Conf.
Volume 483, 2024
The 3rd International Seminar of Science and Technology (ISST 2023)
|
|
---|---|---|
Article Number | 03015 | |
Number of page(s) | 8 | |
Section | Trends in Mathematics and Computer Science for Sustainable Living | |
DOI | https://doi.org/10.1051/e3sconf/202448303015 | |
Published online | 31 January 2024 |
- D. Kang, Y. Lv, and Y. Chen, “Short-term traffic flow prediction with LSTM recurrent neural network,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 1–6. doi: 10.1109/ITSC.2017.8317872. [Google Scholar]
- B. Yang, S. Sun, J. Li, X. Lin, and Y. Tian, “Traffic flow prediction using LSTM with feature enhancement,” Neurocomputing, vol. 332, pp. 320–327, 2019, doi: https://doi.org/10.1016/j.neucom.2018.12.016. [CrossRef] [Google Scholar]
- Y. Tian, K. Zhang, J. Li, X. Lin, and B. Yang, “LSTM-based traffic flow prediction with missing data,” Neurocomputing, vol. 318, pp. 297–305, 2018, doi: https://doi.org/10.1016/j.neucom.2018.08.067. [CrossRef] [Google Scholar]
- W. Wei, H. Wu, and H. Ma, “An AutoEncoder and LSTM-Based Traffic Flow Prediction Method,” Sensors, vol. 19, no. 13, 2019, doi: 10.3390/s19132946. [Google Scholar]
- H. Mou and J. Yu, “CNN-LSTM Prediction Method for Blood Pressure Based on Pulse Wave,” Electronics (Basel), vol. 10, no. 14, 2021, doi: 10.3390/electronics10141664. [Google Scholar]
- S. D. Kumar and D. P. Subha, “Prediction of Depression from EEG Signal Using Long Short Term Memory(LSTM),” in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 2019, pp. 1248–1253. doi: 10.1109/ICOEI.2019.8862560. [Google Scholar]
- J. Wang, J. Li, X. Wang, J. Wang, and M. Huang, “Air quality prediction using CTLSTM,” Neural Comput Appl, vol. 33, no. 10, pp. 4779–4792, 2021, doi: 10.1007/s00521-020-05535-w. [CrossRef] [Google Scholar]
- L. Ren, J. Dong, X. Wang, Z. Meng, L. Zhao, and M. J. Deen, “A Data-Driven AutoCNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life,” IEEE Trans Industr Inform, vol. 17, no. 5, pp. 3478–3487, 2021, doi: 10.1109/TII.2020.3008223. [CrossRef] [Google Scholar]
- F. Qian and X. Chen, “Stock Prediction Based on LSTM under Different Stability,” in 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), 2019, pp. 483–486. doi: 10.1109/ICCCBDA.2019.8725709. [Google Scholar]
- W. Li, T. Logenthiran, and W. L. Woo, “Multi-GRU prediction system for electricity generation’s planning and operation,” IET Generation, Transmission & Distribution, vol. 13, no. 9, pp. 1630–1637, 2019, doi: https://doi.org/10.1049/iet-gtd.2018.6081. [CrossRef] [Google Scholar]
- W. Zhang, H. Li, L. Tang, X. Gu, L. Wang, and L. Wang, “Displacement prediction of Jiuxianping landslide using gated recurrent unit (GRU) networks,” Acta Geotech, vol. 17, no. 4, pp. 1367–1382, 2022, doi: 10.1007/s11440-022-01495-8. [CrossRef] [Google Scholar]
- G. Dai, C. Ma, and X. Xu, “Short-Term Traffic Flow Prediction Method for Urban Road Sections Based on Space–Time Analysis and GRU,” IEEE Access, vol. 7, pp. 143025–143035, 2019, doi: 10.1109/ACCESS.2019.2941280. [CrossRef] [Google Scholar]
- Y. Liu et al., “Bidirectional GRU networks-based next POI category prediction for healthcare,” International Journal of Intelligent Systems, vol. 37, no. 7, pp. 4020–4040, 2022, doi: https://doi.org/10.1002/int.22710. [CrossRef] [Google Scholar]
- C. Li, G. Tang, X. Xue, A. Saeed, and X. Hu, “Short-Term Wind Speed Interval Prediction Based on Ensemble GRU Model,” IEEE Trans Sustain Energy, vol. 11, no. 3, pp. 1370–1380, 2020, doi: 10.1109/TSTE.2019.2926147. [CrossRef] [Google Scholar]
- B. Yang et al., “Motion prediction for beating heart surgery with GRU,” Biomed Signal Process Control, vol. 83, p. 104641, 2023, doi: https://doi.org/10.1016/j.bspc.2023.104641. [CrossRef] [Google Scholar]
- U. Gupta, V. Bhattacharjee, and P. S. Bishnu, “StockNet—GRU based stock index prediction,” Expert Syst Appl, vol. 207, p. 117986, 2022, doi: https://doi.org/10.1016/j.eswa.2022.117986. [CrossRef] [Google Scholar]
- M. Afrasiabi, H. khotanlou, and M. Mansoorizadeh, “DTW-CNN: time series-based human interaction prediction in videos using CNN-extracted features,” Vis Comput, vol. 36, no. 6, pp. 1127–1139, 2020, doi: 10.1007/s00371-019-01722-6. [CrossRef] [Google Scholar]
- A. K. Jain, C. Grumber, P. Gelhausen, I. Häring, and A. Stolz, “A Toy Model Study for Long-Term Terror Event Time Series Prediction with CNN,” European Journal for Security Research, vol. 5, no. 2, pp. 289–309, 2020, doi: 10.1007/s41125-019-00061-w. [CrossRef] [Google Scholar]
- F. Viton, M. Elbattah, J.-L. Guérin, and G. Dequen, “Heatmaps for Visual Explainability of CNN-Based Predictions for Multivariate Time Series with Application to Healthcare,” in 2020 IEEE International Conference on Healthcare Informatics (ICHI), 2020, pp. 1–8. doi: 10.1109/ICHI48887.2020.9374393. [Google Scholar]
- W. Lu, J. Li, J. Wang, and L. Qin, “A CNN-BiLSTM-AM method for stock price prediction,” Neural Comput Appl, vol. 33, no. 10, pp. 4741–4753, 2021, doi: 10.1007/s00521-020-05532-z. [CrossRef] [Google Scholar]
- N. Kimura, I. Yoshinaga, K. Sekijima, I. Azechi, and D. Baba, “Convolutional Neural Network Coupled with a Transfer-Learning Approach for Time-Series Flood Predictions,” Water (Basel), vol. 12, no. 1, 2020, doi: 10.3390/w12010096. [Google Scholar]
- Dr.M. Durairaj and B. H. K. Mohan, “A convolutional neural network based approach to financial time series prediction,” Neural Comput Appl, vol. 34, no. 16, pp. 13319–13337, 2022, doi: 10.1007/s00521-022-07143-2. [CrossRef] [PubMed] [Google Scholar]
- M. Kayal, H. S. Lenihan, A. J. Brooks, S. J. Holbrook, R. J. Schmitt, and B. E. Kendall, “Predicting coral community recovery using multi-species population dynamics models,” Ecol Lett, vol. 21, no. 12, pp. 1790–1799, 2018, doi: https://doi.org/10.1111/ele.13153. [CrossRef] [PubMed] [Google Scholar]
- M. P. Zalucki and R. D. Van Klinken, “Predicting population dynamics of weed biological control agents: science or gazing into crystal balls?,” Aust J Entomol, vol. 45, no. 4, pp. 331–344, 2006, doi: https://doi.org/10.1111/j.1440-6055.2006.00560.x. [CrossRef] [Google Scholar]
- S. H. Woodard and S. Jha, “Wild bee nutritional ecology: predicting pollinator population dynamics, movement, and services from floral resources,” Curr Opin Insect Sci, vol. 21, pp. 83–90, 2017, doi: https://doi.org/10.1016/j.cois.2017.05.011. [CrossRef] [PubMed] [Google Scholar]
- S. A. Estay, M. Lima, and F. A. Labra, “Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modelling,” Journal of Applied Entomology, vol. 133, no. 7, pp. 491–499, 2009, doi: https://doi.org/10.1111/j.1439-0418.2008.01380.x. [CrossRef] [Google Scholar]
- N. McLean, C. R. Lawson, D. I. Leech, and M. van de Pol, “Predicting when climatedriven phenotypic change affects population dynamics,” Ecol Lett, vol. 19, no. 6, pp. 595–608, 2016, doi: https://doi.org/10.1111/ele.12599. [CrossRef] [PubMed] [Google Scholar]
- B. T. Martin, T. Jager, R. M. Nisbet, T. G. Preuss, and V. Grimm, “Predicting Population Dynamics from the Properties of Individuals: A Cross-Level Test of Dynamic Energy Budget Theory.,” Am Nat, vol. 181, no. 4, pp. 506–519, 2013, doi: 10.1086/669904. [CrossRef] [PubMed] [Google Scholar]
- K. Kiritani, “Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan,” Popul Ecol, vol. 48, no. 1, pp. 5–12, 2006, doi: 10.1007/s10144-005-0225-0. [CrossRef] [Google Scholar]
- C. Marchetti, P. S. Meyer, and J. H. Ausubel, “Human population dynamics revisited with the logistic model: How much can be modeled and predicted?,” Technol Forecast Soc Change, vol. 52, no. 1, pp. 1–30, 1996, doi: https://doi.org/10.1016/0040-1625(96)00001-7. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.