Open Access
Issue
E3S Web Conf.
Volume 489, 2024
4th International GIRE3D Congress “Participatory and Integrated Management of Water Resources in Arid Zones” (GIRE3D 2023)
Article Number 04011
Number of page(s) 6
Section Numerical Modeling, Remote Sensing, Geomatic & Application of Intelligence Artificielle
DOI https://doi.org/10.1051/e3sconf/202448904011
Published online 09 February 2024
  1. Wellens, J., D. Raes, E. Fereres, J. Diels, C. Coppye, J.G. Adiele, K.S.G. Ezui, L.A. Becerra, M.G. Selvaraj, G. Dercon and L.K. Heng. 2022. Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz). Agricultural Water Management 263. 107491. [CrossRef] [Google Scholar]
  2. Rodríguez, J C., Grageda, J., Watts, C J., Garatuza-Payan, J., Castellanos-Villegas, A., RodríguezCasas, J., Saiz-Hernandez, J., Olavarrieta, V. 2010. Water use by perennial crops in the lower Sonora watershed. J. Arid Environ. 74(5), 603-610. [CrossRef] [Google Scholar]
  3. Kharrou, M. H, M.L, A. Chehbouni, V. Simonneaux, S. Er-Raki, L. Jarlan, L. Ouzine, S. Khabba and G. Chehbouni. 2013. Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco. Water Resources Management 27:4697–4714. [CrossRef] [Google Scholar]
  4. Olivera-Guerra, L., Merlin, O., Er-Raki, S. 2020. Irrigation retrieval from Landsat optical/thermal data integrated into a crop water balance model: A case study over winter wheat fields in a semiarid region. Remote Sensing of Environment 239, 111627. [CrossRef] [Google Scholar]
  5. Ezzahar, J., Chehbouni, A., Er-Raki, S., and Hanich, L. 2009. Combining a large aperture scintillometer and estimates of available energy to derive evapotranspiration over several agricultural fields in a semi-arid region. Plant Biosystems, 143 (1): 209-221. [CrossRef] [Google Scholar]
  6. Amazirh, A., Er-Raki, S., Chehbouni, A., Rivalland, V., Diarra, A., Khabba, S., Ezzahar, J., Merlin, O. 2017. Modified Penman–Monteith equation for monitoring evapotranspiration of wheat crop: Relationship between the surface resistance and remotely sensed stress index. Biosystems Engineering. 164, 68-84. [Google Scholar]
  7. Hssaine, B.A., O. Merlin, Z. Rafi, J. Ezzahar, L. Jarlan, S. Khabba and S. Er-Raki. 2018. Calibrating an evapotranspiration model using radiometric surface temperature, vegetation cover fraction and near-surface soil moisture data. Agricultural and Forest Meteorology 256–257:104–115. [Google Scholar]
  8. Er-Raki, S., J. Ezzahar, O. Merlin, A. Amazirh, B. Ait Hssaine, M. H. Kharrou, S. Khabba, A. Chehbouni. 2021. Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco. Agricultural Water Management. 244, 2021, 106546. [CrossRef] [Google Scholar]
  9. Williams, L E. Ayars, E. 2005. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 132:201-211. [CrossRef] [Google Scholar]
  10. Ferreira, M.I., Silvestre, J., Conceicão, N., Malheiro, C.A., 2012. Crop and stress coefficients in rainfed and deficit irrigation vineyards using sap flow techniques. Irrig. Sci. 30 (5), 433–447. [CrossRef] [Google Scholar]
  11. Zhang, Y., Kang, S., Ward, E.J., Ding, R., Zhang, X., Zheng, R., 2011. Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: dynamics and influential factors. Agric. Water Manage. 98 (8), 1207–1214. [CrossRef] [Google Scholar]
  12. Fooladmand, H.R., Sepaskhah, A.R., 2009. A soil water balance model for a rain-fed vineyard in a micro catchment based on dual crop coefficient. Arch. Agron. Soil Sci. 55, 67–77. [CrossRef] [Google Scholar]
  13. Toumi, J., Er-Raki, S., Ezzahar, J., Khabba, S., Jarlan, L., Chehbouni, A. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management. 163(1):219-235. [Google Scholar]
  14. Paredes, P., de Melo-Abreu, J.P., Alves, I., Pereira, L.S., 2014. Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agric. Water Manage. 144, 81–97. [CrossRef] [Google Scholar]
  15. Paredes, P., Wei, Z., Liu, Y., Xu, D., Xin, Y., Zhang, B., Pereira, L.S., 2015. Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain. Agric. Water Manage. 152, 57–71. [CrossRef] [Google Scholar]
  16. Maniruzzaman, M., Talukder, M.S.U., Khan, M.H., Biswas, J.C., Nemes, A., 2015. Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agric. Water Manage. 159, 331–340. [CrossRef] [Google Scholar]
  17. Araya, A., Kisekka, I., Holman, J., 2016. Evaluating deficit irrigation management strategies for grain sorghum using AquaCrop. Irrig. Sci. 34 (6), 465–481. [CrossRef] [Google Scholar]
  18. Farahani, H.J., Izzi, G., Oweis, T.Y., 2009. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron. J. 101 (3), 469–476. [CrossRef] [Google Scholar]
  19. Er-Raki, S., J.C. Rodriguez, J. Garatuza-Payan, C.J. Watts and A. Chehbouni. 2013. Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multispectral vegetation index. Agricultural Water Management 122:12–19. [CrossRef] [Google Scholar]
  20. Allen, R.G., L.S. Pereira, D. Raes and M. Smith. 1998. Crop evapotranspiration: Guidelines for computing crop requirements. Irrigation and Drainage Paper No. 56, FAO. [Google Scholar]
  21. Webb, B.E., G.I. Pearman and R. Leuning. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. [Google Scholar]
  22. Molden, D., Sakthivadivel, R. & Habib, Z. 2001. Basinlevel use and productivity of water: examples from South Asia. Research Report 49. IWMI, Colombo. [Google Scholar]
  23. Er-Raki, S., E. Bouras, J.C. Rodriguez, C.J. Watts, C. Lizarraga-Celaya, A. Chehbouni. 2021. Parameterizam!tion of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico. Agricultural Water Management. 244, 2021, 106546. [CrossRef] [Google Scholar]
  24. Teixeira, A H de C., Bastiaanssen, W G M., Bassoi, L H. 2007. Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the São Francisco river basin, Brazil. Agric. Water Manage. 94: 31-42. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.