Open Access
Issue
E3S Web Conf.
Volume 489, 2024
4th International GIRE3D Congress “Participatory and Integrated Management of Water Resources in Arid Zones” (GIRE3D 2023)
Article Number 04010
Number of page(s) 9
Section Numerical Modeling, Remote Sensing, Geomatic & Application of Intelligence Artificielle
DOI https://doi.org/10.1051/e3sconf/202448904010
Published online 09 February 2024
  1. A.Y. Barrera-Animas et al., Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting, Mach. Learn. Appl., 7, 100204 (2022) https://doi.org/10.1016/j.mlwa.2021.100204 [Google Scholar]
  2. I. Yucel, A. Onen, K.K. Yilmaz, D.J. Gochis, Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall, J. Hydrol., 523, 49-66 (2015) https://doi.org/10.1016/j.jhydrol.2015.01.042 [CrossRef] [Google Scholar]
  3. P. Lynch, The origins of computer weather prediction and climate modelling, J. Comput. Phys., 227, 3431–3444 (2007) https://doi.org/10.1016/j.jcp.2007.02.034 [Google Scholar]
  4. B. T. Pham et al., Development of advanced artificial intelligence models for daily rainfall prediction, Atmos. Res., 237, 104845 (2020) https://doi.org/10.1016/j.atmosres.2020.104845 [CrossRef] [Google Scholar]
  5. M. Heistermann et al., Technical Note: An open source library for processing weather radar data (wradlib), Hydrol. Earth Syst. Sci., 17, 863–871 (2013) https://doi.org/10.5194/hess-17-863-2013 [CrossRef] [Google Scholar]
  6. S. A. AlHassoun, Developing an empirical formulae to estimate rainfall intensity in Riyadh region, J. King Saud Univ. Eng. Sci., 23, 81–88 (2011) https://doi.org/10.1016/j.jksues.2011.03.003 [Google Scholar]
  7. A. al Mamun et al., Estimation of short-duration rainfall intensity from daily rainfall values in Klang Valley, Malaysia, Appl. Water Sci., 8, 203 (2018) https://doi.org/10.1007/s13201-018-0854-z [Google Scholar]
  8. G. Villarini et al., Spatial and temporal modeling of radar rainfall uncertainties, Atmos. Res., 135–136, 91–101 (2014) https://doi.org/10.1016/j.atmosres.2013.09.007 [CrossRef] [Google Scholar]
  9. M. Niu et al., An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting, Appl. Math. Model., 40, 4079–4093 (2016) https://doi.org/10.1016/j.apm.2015.11.030 [CrossRef] [Google Scholar]
  10. Y. Xiang et al., A SVR–ANN combined model based on ensemble EMD for rainfall prediction, Appl. Soft Comput., 73, 874–883 (2018) https://doi.org/10.1016/j.asoc.2018.09.018 [CrossRef] [Google Scholar]
  11. A. el Ouali et al., Hydrological Modeling and Impact of Climate Change on Water Resources in the Ziz Valley, Central High Atlas, Morocco, Ecol. Eng. Environ. Technol., 24(6), 192–210 (2023) https://doi.org/10.12912/27197050/168335 [CrossRef] [Google Scholar]
  12. R. Mehdaoui et al., Caractérisation à l’aide du SPI de la Sécheresse climatique dans le bassin versant de Ziz (Sud-Est, Maroc), Eur. Sci. J., 14(21), 177 (2018) https://doi.org/10.19044/esj.2018.v14n21p177 [Google Scholar]
  13. S. Narayanakumar & K. Raja, A BP Artificial Neural Network Model for Earthquake Magnitude Prediction in Himalayas, India, Circuits and Systems, 07(11), 3456–3468 (2016) https://doi.org/10.4236/cs.2016.711294 [CrossRef] [Google Scholar]
  14. T. Evgeniou & M. Pontil, Support Vector Machines: Theory and Applications, Lecture Notes in Computer Science, 249–257 (2001) https://doi.org/10.1007/3-540-44673-7_12 [Google Scholar]
  15. O. S. Ojo et al., Machine learning models for prediction of rainfall over Nigeria, Sci. Afr., 16, e01246 (2022) https://doi.org/10.1016/j.sciaf.2022.e01246 [Google Scholar]
  16. Z. Chao et al., Research on real-time local rainfall prediction based on MEMS sensors, J. Sens., 2018, 1-9 (2018) https://doi.org/10.1155/2018/6184713 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.