Open Access
Issue
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
Article Number 01017
Number of page(s) 9
Section Energy Management for Sustainable Environment
DOI https://doi.org/10.1051/e3sconf/202449101017
Published online 21 February 2024
  1. Brånemark, P.I.; Adell, R.; Breine, U.; Hansson, B.O.; Lindstrom, J.; Ohlsson, A. Intraosseous anchorage of dental prostheses. I. Experimental studies. Scand. J. Plast. Reconstr. Surg. 1969, 3, 81–100. [Google Scholar]
  2. Renouard, F.; Nisand, D. Impact of implant length and diameter on survival rates. Clin. Oral Implants Res. 2006, 17, 35–51. [CrossRef] [PubMed] [Google Scholar]
  3. Huiskes, R.; Ruimerman, R.; Van Lenthe, G.H.; Janssen, J.D. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 2000, 405, 704–706. [CrossRef] [PubMed] [Google Scholar]
  4. Schalock, P.C.; Menné, T.; Johansen, J.D.; Taylor, J.S.; Maibach, H.I.; Lidén, C.; Bruze, M.; Thyssen, J.P. Hypersensitivity reactions to metallic implants-Diagnostic algorithm and suggested patch test series for clinical use. Contact Dermat. 2012, 66, 4–19. [CrossRef] [PubMed] [Google Scholar]
  5. Nakamura, K.; Kanno, T.; Milleding, P.; Ortengren, U. Zirconia as a dental implant abutment material: A systematic review. Int. J. Prosthodont. 2010, 23, 299–309. [Google Scholar]
  6. Özkurt, Z.; Kazazo˘ glu, E. Zirconia dental implants: A literature review. J. Oral Implantol. 2011, 37, 367–376. [Google Scholar]
  7. Kelly, J.R.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater. 2008, 24, 289–298. [CrossRef] [Google Scholar]
  8. Eschbach, L. Nonresorbable polymers in bone surgery. Injury 2000, 31, 22–27. [Google Scholar]
  9. Fujihara, K.; Huang, Z.M.; Ramakrishna, S.; Satknanantham, K.; Hamada, H. Feasibility of knitted carbon/PEEK composites for orthopedic bone plates. Biomaterials 2004, 25, 3877–3885. [CrossRef] [PubMed] [Google Scholar]
  10. Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869 [CrossRef] [PubMed] [Google Scholar]
  11. Kurtz, S.M. PEEK Biomaterials Handbook; Elsevier Science: Waltham, MA, USA, 2012; pp. 30–31. [Google Scholar]
  12. Sandler, J.;Werner, P.; Shaffer, M.S.; Demchuk, V.; Altstädt, V.;Windle, A.H. Carbon-nanofibre-reinforced poly(ether ether ketone) composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1033–1039. [CrossRef] [Google Scholar]
  13. Schwitalla, A.D.; Emara, M.A.; Spintig, T.; Lackmann, J.; Müller, W.D. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J. Biomech. 2015, 48, 1–7. [CrossRef] [Google Scholar]
  14. Najeeb, S.; Zafar, M.S.; Khursid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [CrossRef] [Google Scholar]
  15. Rust-Dawicki, A.M.; Cook, S.D. Preliminary evaluation of titanium-coated PEEK implants. J. Oral Implantol. 1995, 21, 75–77 [Google Scholar]
  16. Wiesli, M.G.; Med, M.D.; Özcan, M. High-performance polymers and their potential application as medical and oral implant materials: A review. Implant Dent. 2015, 24, 448–457. [Google Scholar]
  17. Javed F, Ahmed HB, Crespi R, Romanos GE. Role of primary stability for successful osseointegration of dental implants: factors of influence and evaluation. Interv Med Appl Sci. 2013;5:162–167. [Google Scholar]
  18. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–854. [CrossRef] [Google Scholar]
  19. Geng JP, Xu DW, Tan KB, Liu GR. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol. 2004;30:223–233. [CrossRef] [PubMed] [Google Scholar]
  20. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, et al. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil. 2002;29:565–574. [CrossRef] [PubMed] [Google Scholar]
  21. X. Chen, L. Xu, Y. Wang, Y. Hao, L. Wang, Image-guided installation of 3D-printed patient-specific implant and its application in pelvic tumor resection and reconstruction surgery, Comput. Meth Prog. Biomed. 1 (125) (2016) 66–78 [Google Scholar]
  22. Y. Ren, P. Sikder, B. Lin, S.B. Bhaduri, Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on PEEK, Mater Sci. Eng. C 85 (2018) 107–113. [CrossRef] [Google Scholar]
  23. P. Feng, J. Jia, S. Peng, W. Yang, S. Bin, C. Shuai, Graphene oxide-driven interfacial coupling in laser 3D printed PEEK/PVA scaffolds for bone regeneration, Virtual Phys Prototy 15 (2020) 211–226. [CrossRef] [Google Scholar]
  24. D. Briem, S. Strametz, N.M. Meenen, W. Lehmann, W. Linhart, A. Ohl, J. M. Rueger, Response of primary (PEEK) surfaces, J. Mater. Sci. Mater. Med. 6 (2005) 671–677. [CrossRef] [PubMed] [Google Scholar]
  25. H. Yu, Y. Chen, M. Mao, D. Liu, J. Ai, W. Leng, PEEK-biphasic bioceramic composites promote mandibular defect repair and upregulate BMP-2 expression in rabbits, Mol. Med. Rep. 17 (2018) 8221–8227. [Google Scholar]
  26. D. Garcia-Gonzalez, M. Rodriguez-Millan, A. Rusinek, A. Arias, Low temperature effect on impact energy absorption capability of PEEK composites, Compos. Struct. 134 (2015) 440–449. [CrossRef] [Google Scholar]
  27. R.B. Durairaj, P. Borah, Y. Thuvaragees, Characterization of PEEK coated S.S316 l for biomedical application, ARPN J Eng Appl Sci 10 (11) (2015) 4794–4798. [Google Scholar]
  28. D. Almasi, S. Izman, M. Assadian, M. Ghanbari, M.R. Abdul Kadir, Crystalline ha coating on PEEK via chemical deposition, Appl. Surf. Sci. 314 (2014) 1034–1040. [CrossRef] [Google Scholar]
  29. L. de Ruiter, D. Janssen, A. Briscoe, N. Verdonschot, The mechanical response of a polyetheretherketone femoral knee implant under a deep squatting loading condition, Proc. Inst. Mech. Engg., Part H: J. Engg. Med. 231 (2017) 1204–1212, https://doi.org/10.1177%2F0954411 917738805. [Google Scholar]
  30. S. Green, J. Schlegel, A polyaryletherketone biomaterial for use in medical implant applications, Poly. Med. Ind. Proc., Brussels, 2001, pp. 14–15. [Google Scholar]
  31. C.S. Li, C. Vannabouathong, S. Sprague, M. Bhandari, The use of carbon-fiber reinforced (CFR) PEEK material in orthopedic implants: a systematic review, Clinical Medicine Insights: Arth. Musculo. Dis. 8 (2015). CMAMD-S20354. https://doi.org/10.4137% 2FCMAMD.S20354. [Google Scholar]
  32. Cochran DL. A comparison of endosseous dental implant surfaces. JPeriodontol. 1999;70(12):1523–39 [CrossRef] [PubMed] [Google Scholar]
  33. Monje A, Chan HL, Fu JH, Suarez F, Moreno PG, Wang HL. Are shortdental implants (<0 mm) effective? a meta-analysis on prospectiveclinical trials. J Periodontol. 2013;84(7):895–904. [CrossRef] [PubMed] [Google Scholar]
  34. Misch CE, Qu M, Bidez MW. Mechanical properties of trabecularbone in the human mandible: implications for dental implanttreatment planning and surgical placement. J Oral Maxillofac Surg.1999;57(6):700–6. http://doi:10.1016/s0278-2391(99)90437-8. [CrossRef] [PubMed] [Google Scholar]
  35. Allum SR, Tomlinson RA, Joshi R. The impact of loads on standarddiameter, small diameter and mini implants: a comparative laboratorystudy. Clin Oral Implants Res. 2008;19(6):553–9 [CrossRef] [PubMed] [Google Scholar]
  36. Schwitalla AD, Emara MA, Spintig T, Lackmann J, Müller WD. Finite elementanalysis of the biomechanical effects of PEEK dental implants on the peri-implant [Google Scholar]
  37. bone .J Biomech. 2015;48:1–7. [Google Scholar]
  38. Bankole I. Oladapo, S.A. Zahedi, Sikiru Ismail, Yarjan Samad, Vincent Balogun, Overview of additive manufacturing biopolymer composites, Ref. Module Mater. Sci. Mater. Eng. (2021), https://doi.org/10.1016/B978-0-12-819724-0.00035-5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.