Open Access
Issue
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
Article Number 02006
Number of page(s) 6
Section Smart Systems for Environmental Development
DOI https://doi.org/10.1051/e3sconf/202449102006
Published online 21 February 2024
  1. Nukala, R., Panduru, K., Shields, A., Riordan, D., Doody, P., & Walsh, J. (2016, June). Internet of Things: A review from ‘Farm to Fork’. In 2016 27th Irish signals and systems conference (ISSC) (pp. 1–6). IEEE. [Google Scholar]
  2. Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of things Journal, 9(9), 6305–6324. [Google Scholar]
  3. Shaikh, T. A., Rasool, T., & Lone, F. R. (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198, 107119. [CrossRef] [Google Scholar]
  4. Chun-Ting, P., Meng-Ju, L., Nen-Fu, H., Jhong-Ting, L., & Jia-Jung, S. (2020, January). Agriculture blockchain service platform for farm-to-fork traceability with IoT sensors. In 2020 international conference on information networking (ICOIN) (pp. 158–163). IEEE. [Google Scholar]
  5. De Abreu, C. L., & van Deventer, J. P. (2022). The application of artificial intelligence (AI) and internet of things (IoT) in agriculture: A systematic literature review. In Southern African Conference for Artificial Intelligence Research (pp. 32–46). Springer, Cham. [Google Scholar]
  6. Khanna, A., & Kaur, S. (2019). Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture. Computers and electronics in agriculture, 157, 218–231. [CrossRef] [Google Scholar]
  7. Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., & Ellis, K. (2017). IoT in agriculture: Designing a Europe-wide large-scale pilot. IEEE communications magazine, 55(9), 26–33. [CrossRef] [Google Scholar]
  8. Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020). Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170, 105256. [CrossRef] [Google Scholar]
  9. Saiz-Rubio, V., & Rovira-Más, F. (2020). From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 10(2), 207. [CrossRef] [Google Scholar]
  10. De Janvry, A., Macours, K., & Sadoulet, E. (2017). Learning for adopting: Technology adoption in developing country agriculture. Ferdi. [Google Scholar]
  11. Tiwari, R., Chand, K., Bhatt, A., Anjum, B., & Thirunavukkarasu, K. (2021). Agriculture 5.0 in India: Opportunities and Challenges of Technology Adoption. A Step Towards Society 5.0, 179–198. [Google Scholar]
  12. Demestichas, K., Peppes, N., Alexakis, T., & Adamopoulou, E. (2020). Blockchain in agriculture traceability systems: A review. Applied Sciences, 10(12), 4113. [CrossRef] [Google Scholar]
  13. Wang, Z., & Liu, P. (2019). Application of blockchain technology in agricultural product traceability system. In Artificial Intelligence and Security: 5th International Conference, ICAIS 2019, New York, NY, USA, July 26–28, 2019, Proceedings, Part III 5 (pp. 81–90). Springer International Publishing. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.