Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 03002
Number of page(s) 14
Section Modelling and Numerical Analysis
DOI https://doi.org/10.1051/e3sconf/202450503002
Published online 25 March 2024
  1. T. Seshaiah, A. Kumar, S. Shabeer Ali, and Degala, Rajendra, ‘Experimental investigation of the performance of a thermoacoustic refrigeration’, Mater today Proc, no. xxxx, 2022, DOI: 10.1016/j.matpr.2022.02.356. [Google Scholar]
  2. P. Chaiwongsa and S. Wongwises, ‘Effect of the blockage ratios of circular stack on the performance of the air-based standing wave thermoacoustic refrigerator using heat pipe’, Case Studies in thermal Engineering, vol. 24, p. 100843, 2021, DOI: 10.1016/j.csite.2021.100843. [CrossRef] [Google Scholar]
  3. N. Rosle, F. Mohd Saat, R.N.F.K. Raja Othman, and I. Abd. Rahim, ‘The impact of stack parameters on the temperature difference of a thermoacoustic cooler’, Thermal Science, vol. 26, no. 6 Part A, pp. 4535–4546, 2022, DOI: 10.2298/tSCI211018073R. [Google Scholar]
  4. J. Kajurek and A. Rusowicz, ‘Experimental Investigation on the thermoacoustic Effect in Easily Accessible Porous Materials’, Energies (Basel), vol. 14, no. 1, p. 83, Dec. 2020, DOI: 10.3390/en14010083. [Google Scholar]
  5. N.A. Zolpakar, N. Mohd-Ghazali, and R. Ahmad, ‘Experimental investigations of the performance of a standing wave thermoacoustic refrigerator based on multi-objective genetic algorithm optimized parameters’, Appl therm Eng, vol. 100, pp. 296–303, May 2016, DOI: 10.1016/j.applthermaleng.2016.02.028. [CrossRef] [Google Scholar]
  6. R. Rahpeima and R. Ebrahimi, ‘A numerical approach for optimization of the working fluid of a standing-wave thermo-acoustic refrigerator’, Eng Comput, no. 0123456789, 2022, DOI: 10.1007/s00366-022-01646-1. [Google Scholar]
  7. J. Kajurek, A. Rusowicz, and A. Grzebielec, ‘Design and simulation of a small capacity thermoacoustic refrigerator’, SN Appl Sci, vol. 1, no. 6, pp. 1–9, 2019, DOI: 10.1007/s42452-019-0569-2. [CrossRef] [Google Scholar]
  8. C. Wantha, ‘The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems’, Heat and Mass transfer/Waerme- und Stoffuebertragung, vol. 54, no. 7, pp. 2153–2161, 2018, DOI: 10.1007/s00231-018-2280-z. [Google Scholar]
  9. N.A. Zolpakar, N. Mohd-Ghazali, R. Ahmad, and T. Maré, ‘Performance of a 3D-printed Stack in a Standing Wave thermoacoustic Refrigerator’, Energy Procedia, vol. 105, pp. 1382–1387, May 2017, DOI: 10.1016/j.egypro.2017.03.513. [Google Scholar]
  10. M.A. Alamir and A.A. Elamer, ‘A compromise between the temperature difference and performance in a standing wave thermoacoustic refrigerator’, International Journal of Ambient Energy, vol. 41, no. 13, pp. 1441–1453, Nov. 2020, DOI: 10.1080/01430750.2018.1517673. [Google Scholar]
  11. N.V. Shivakumara and A. Bheemsha, ‘Performance Analysis of thermoacoustic Refrigerator of 10 W Cooling Power made up of Poly-Vinyl-Chloride for Different Parallel Plate Stacks by using Helium as a Working Fluid’, Journal of thermal Science, vol. 30, no. 6, pp. 2037–2055, Nov. 2021, DOI: 10.1007/s11630-021-1390-y. [Google Scholar]
  12. A. Nathad, F. Ahmed, M.O. Khalid, R. Kumar, and H. Hafeez, ‘Experimental Analysis of an Economical Lab Demonstration Prototype of a thermo Acoustic Refrigerator (tAR)’, Energy Procedia, vol. 157, pp. 343–354, Jan. 2019, DOI: 10.1016/j.egypro.2018.11.199. [Google Scholar]
  13. J. Yuan Ong, Y. Jin King, L. Huat Saw, and K. Keng Theng, ‘Optimization of the Design Parameter for Standing Wave thermoacoustic Refrigerator using Genetic Algorithm’, IOP Conf Ser Earth Environ Sci, vol. 268, no. 1, p. 012021, Jun. 2019, DOI: 10.1088/1755-1315/268/1/012021. [Google Scholar]
  14. R. Rahpeima and R. Ebrahimi, ‘Numerical investigation of the effect of stack geometrical parameters and thermo-physical properties on performance of a standing wave thermoacoustic refrigerator’, Appl therm Eng, vol. 149, pp. 1203–1214, Feb. 2019, DOI: 10.1016/j.applthermaleng.2018.12.093. [CrossRef] [Google Scholar]
  15. P. Chaiwongsa and S. Wongwises, ‘Effect of the blockage ratios of circular stack on the performance of the air-based standing wave thermoacoustic refrigerator using heat pipe’, Case Studies in thermal Engineering, vol. 24, p. 100843, Apr. 2021, DOI: 10.1016/j.csite.2021.100843. [CrossRef] [Google Scholar]
  16. L. Tartibu, ‘Mathematical programming formulation for large-scale standing-wave thermo-acoustic refrigerator design optimization’, in Proceedings of the International Conference on Industrial Engineering and Operations Management, Pretoria: IEOM Society International, OcT. 2018, pp. 1165–1175. [Google Scholar]
  17. G.W. Swift, ‘Thermoacoustic engines’, J Acoust Soc Am, vol. 84, no. 4, pp. 1145–1180, OcT. 1988, DOI: 10.1121/1.396617. [CrossRef] [Google Scholar]
  18. A. Nathad, F. Ahmed, M. Osama Khalid, R. Kumar, and H. Hafeez, ‘Experimental analysis of an economical lab demonstration prototype of a thermo acoustic refrigerator (tAR)’, Energy Procedia, vol. 157, pp. 343–354, 2019, DOI: 10.1016/j.egypro.2018.11.199. [Google Scholar]
  19. U.N. Bhatti, S. Bashmal, S. Khan, and R. Ben-Mansour, ‘Numerical Modeling and Performance Evaluation of Standing Wave thermoacoustic Refrigerators with a Multi-Layered Stack’, Energies (Basel), vol. 13, no. 17, p. 4360, Aug. 2020, DOI: 10.3390/en13174360. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.