Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 03015
Number of page(s) 18
Section Modelling and Numerical Analysis
DOI https://doi.org/10.1051/e3sconf/202450503015
Published online 25 March 2024
  1. Newmark, Nathan M. (1959), “A method of computation for structural dynamics”, Journal of Engineering Mechanics, ASCE, 85 (EM3): 67–94. [Google Scholar]
  2. Hilber, H.M., Hughes, T.J.R., and Taylor, R.L. “Improved Numerical Dissipation for time Integration Algorithms in Structural Dynamics”, Earthquake Engineering and Structural Dynamics, 5 (1977), 283–292. [Google Scholar]
  3. Simo, J.C. and Taylor, R.L. “Consistent tangent operators for rate-independent elastoplasticity”, Computer Methods in Applied Mechanics and Engineering, 48 (1985), 101–118, North-Holland. [Google Scholar]
  4. Wood, W.L. Practical time-stepping schemes. Oxford, UK: Claredon Press; 1990. [Google Scholar]
  5. Bathe, K.-J., Noh, G. “Insight into an implicit time integration scheme for structural dynamics”. Computers and Structures, 98-99 (2012), 1–6. [Google Scholar]
  6. Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals, 6th edition, Oxford, UK: Elsevier Butterworth-Heinemann; 2005. [Google Scholar]
  7. Kaunda, M.A.E. “Forward-backward-di_erence time-integrating Schemes with Higher Order Derivatives for Non-linear Finite Element Analysis of Solids and Structures”, Computers and Structures, 153, (2015), 1–18. http://doi.org/10.1016/j.compstruc.2015.02.026. [Google Scholar]
  8. Kaunda M.A.E. “Improved numerical solutions of nonlinear oscillatory systems”. Int J Numer Methods Eng. 2019;1–17. https://doi.org/10.1002/nme.6292. [Google Scholar]
  9. Smith, J.M. Mathematical Modelling and Digital Simulation for Engineers and Scientists, John Wiley and Sons Inc. 1977. [Google Scholar]
  10. Collatz, L. The numerical treatment of di_erential equations. 2nd printing of 3rd edition, Berlin, Germany: Springer Verlag/GMBH; 1966. [Google Scholar]
  11. Hildebrand, F.B. Introduction to numerical analysis, 2nd edition, Mineola, NY: Dover Publications, Inc.; 1974. [Google Scholar]
  12. Strogatz, Steven H. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Reading, MA: Perseus Books Publishers; 1994. [Google Scholar]
  13. La Salle, J., and Lefschetz, S. 1961. Stability by Liapunov’s direct method with applications, RIAS, Inc. Baltimore, Maryland, Academic Press Inc. [Google Scholar]
  14. Irons, B.M. and Shrive, N.G. 1987. Numerical Methods in Engineering and Applied Science - Numbers are Fun, Ellis Horwood, Chichester. [Google Scholar]
  15. Meirovitch, L. Fundamentals of Vibrations, McGraw-Hill Higher Education, International Edition, 2001. [Google Scholar]
  16. Thomson, W.T. Theory of Vibrations with Applications, 2nd edition, George Allen and Unwin Ltd., 1983. [Google Scholar]
  17. Jordan, D.W. and Smith, P. Nonlinear ordinary di_erential equations: an introduction for scientists and engineers, 4th edition, New York, NY: Oxford University Press Inc.; 2007. [Google Scholar]
  18. Kreyszig, E. Advanced engineering mathematics, 10th edition, Wiley, 2011. [Google Scholar]
  19. E.V. Appleton, Proc. Cambridge Phil. Soc. 21 (1922), 231–4. [Google Scholar]
  20. B. van der Pol, Phil. Mag. 3 (1927), 65–80. [Google Scholar]
  21. On Non-Linear Di_erential Equations of the Second Order: II. the Equation y + kf(y; y_ + g(y; k) = p(t) = p1(t) + kp2(t); k > 0; f(y)>1 Author(s): M.L. Cartwright and J.E. Littlewood Source: Annals of Mathematics, Apr., 1947, Second Series, Vol. 48, No. 2 (Apr., 1947), pp. 472–494 Published by: Mathematics Department, Princeton University Stable URL: https://www.jstor.org/stable/1969181. [Google Scholar]
  22. M.L. Cartwright, J. Instn Elect. Engrs, 95, Part m (1948), 88–96. [Google Scholar]
  23. M.L. Cartwright, Non-linear Vibrations: A Chapter in Mathematical History. Presidential Address to the Mathematical Association, January 3, 1952. edited by T.A.A. Broadbent, M.A. Royal Naval College, Greenwich, London, S.E. IO London G. Bell and Sons, Ltd., Portugal Street, Kingsway vol. XXXVI May, 1952 no. 316. [Google Scholar]
  24. Marios Tsatsos. “Theoretical and Numerical Study of the van der Pol equation”, dissertation, Aristotle University of thessaloniki School of Sciences, July 2006. [Google Scholar]
  25. Jean-Marc Ginoux. From Nonlinear Oscillations to Chaos theory. The Foundations of Chaos Revisited: From Poincare to Recent Advancements, 2016. hal-01856968. [Google Scholar]
  26. Y. Wang, tong Zhang, Xuelin Zhang, Shengwei Mei, Ningning Xie, Xiaodai Xue. “On an accurate Aposteriori error estimator and adaptive time stepping for the implicit and explicit composite time integration algorithms”, Computers and Structures, 266, (2022). http://doi.org/10.1015/j.compstruc.2022.106789. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.