Open Access
E3S Web of Conf.
Volume 507, 2024
International Conference on Futuristic Trends in Engineering, Science & Technology (ICFTEST-2024)
Article Number 01018
Number of page(s) 7
Published online 29 March 2024
  1. Samson, D., & Moses, O. T. (2014). Correlation between non-destructive testing (NDT) and destructive testing (DT) of compressive strength of concrete. International Journal of Engineering Science Invention, 3(9), 12–17. [Google Scholar]
  2. Ivanchev, I. (2022). Investigation with Non-Destructive and Destructive Methods for Assessment of Concrete Compressive Strength. Applied Sciences, 12(23), 12172. [Google Scholar]
  3. Jain, A., Kathuria, A., Kumar, A., Verma, Y., & Murari, K. (2013). Combined use of non-destructive tests for assessment of strength of concrete in structure. Procedia Engineering, 54, 241–251. [Google Scholar]
  4. Poorarbabi, A., Ghasemi, M., & Moghaddam, M. A. (2020). Concrete compressive strength prediction using nondestructive tests through response surface methodology. Ain Shams Engineering Journal, 11(4), 939–949. [Google Scholar]
  5. Malek, J., & Kaouther, M. (2014). Destructive and non-destructive testing of concrete structures. Jordan journal of civil engineering, 8(4), 432–441. [Google Scholar]
  6. Upadhyay, K. K., Srivastava, S., Arun, V., & Shukla, N. K. (2020). Design and performance analysis of all-optical reversible full adder, as ALU. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 90, 899–909. [Google Scholar]
  7. Srinivasan, K., Porkumaran, K., & Sainarayanan, G. (2009, August). Improved background subtraction techniques for security in video applications. In 2009 3rd International Conference on Anti-counterfeiting, Security, and Identification in Communication (pp. 114–117). IEEE. [Google Scholar]
  8. Aydın, F., & Sarıbıyık, M. (2010). Compressive strength of various ages concretes by non-destructive test methods. Sci. Res. Essays, 5, 1644–1648. [Google Scholar]
  9. Hannachi, S., & Guetteche, M. N. (2014, December). Review of the rebound hammer method estimating concrete compressive strength on site. In International conference on architecture and civil engineering (pp. 118–127). [Google Scholar]
  10. Arun, V., Singh, A. K., Shukla, N. K., & Tripathi, D. K. (2016). Design and performance analysis of SOA–MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuit. Optical and quantum electronics, 48, 1–15. [Google Scholar]
  11. Kazemi, M., Madandoust, R., & de Brito, J. (2019). Compressive strength assessment of recycled aggregate concrete using Schmidt rebound hammer and core testing. Construction and Building Materials, 224, 630–638. [Google Scholar]
  12. Šadzevičius, R., Sankauskienė, T., & Milius, P. (2015). Comparison of concrete compressive strength values obtained using rebound hammer and drilled core specimens. In International scientific conference RURAL DEVELOPMENT 2017. [Google Scholar]
  13. Mohammed, Kahtan A., Kareema M. Ziadan, Alaa S. Al-Kabbi, Kuldeep K. Saxena, Rahman S. Zabibah, Ali Jawad Alrubaie, and Jalal Hasan Mohammed. “Optical, morphological, electrical properties and white light photoresponse of CdSe nanoparticles.” Advances in Materials and Processing Technologies 8, no. sup4 (2022): 2289–2298. [Google Scholar]
  14. Aboutaleb, S., Behnia, M., Bagherpour, R., & Bluekian, B. (2018). Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bulletin of Engineering Geology and the Environment, 77, 1717–1728. [Google Scholar]
  15. Tripathi, G. P., Agarwal, S., Awasthi, A., & Arun, V. (2022, August). Artificial Hip Prostheses Design and Its Evaluation by Using Ansys Under Static Loading Condition. In Biennial International Conference on Future Learning Aspects of Mechanical Engineering (pp. 815–828). Singapore: Springer Nature Singapore. [Google Scholar]
  16. MONTEIRO, A., & GONÇALVES, A. (2009). Assessment of characteristic compressive strength in structures by the rebound hammer test according to EN 13791: 2007. NDTCE, 9, 249–254. [Google Scholar]
  17. Swarna, K. S. V., Vinayagam, A., Ananth, M. B. J., Kumar, P. V., Veerasamy, V., & Radhakrishnan, P. (2022). A KNN based random subspace ensemble classifier for detection and discrimination of high impedance fault in PV integrated power network. Measurement, 187, 110333. [Google Scholar]
  18. Rani, G. Jamuna, VV Venu Madhav, B. Balakrishna, Kuldeep K. Saxena, Kahtan A. Mohammed, B. S. Rawat, and Lovi Raj Gupta. “Numerical simulation of mould filling process using ansys.” Advances in Materials and Processing Technologies (2022): 1–9. [Google Scholar]
  19. Shariati, M., Ramli-Sulong, N. H., Arabnejad, M. M., Shafigh, P., & Sinaei, H. (2011). Assessing the strength of reinforced concrete structures through Ultrasonic Pulse Velocity and Schmidt Rebound Hammer tests. scientific research and essays, 6(1), 213–220. [Google Scholar]
  20. Awasthi, A., Saxena, K. K., & Arun, V. (2021). Sustainable and smart metal forming manufacturing process. Materials Today: Proceedings, 44, 2069–2079. [Google Scholar]
  21. Manohar, T., Prashantha, S. C., Nagaswarupa, H. P., Naik, R., Nagabhushana, H., Anantharaju, K. S., … & Premkumar, H. B. (2017). White light emitting lanthanum aluminate nanophosphor: near ultra violet excited photoluminescence and photometric characteristics. Journal of Luminescence, 190, 279–288. [Google Scholar]
  22. Kishore, Kamal, Nakul Gupta, Kuldeep Kumar Saxena, and Jayahari Lade. “Development and characterisation of bacteria as a potential application in enduring the mechanical and durability characteristic of cement composite.” Advances in Materials and Processing Technologies 8, no. sup3 (2022): 1604–1621 [Google Scholar]
  23. Ashwini, S., Prashantha, S. C., Naik, R., & Nagabhushana, H. (2019). Enhancement of luminescence intensity and spectroscopic analysis of Eu3+ activated and Li+ charge-compensated Bi2O3 nanophosphors for solid-state lighting. Journal of Rare Earths, 37(4), 356–364. [Google Scholar]
  24. Sonia, Pankaj, Jinesh Kumar Jain, and Kuldeep K. Saxena. “Influence of severe metal forming processes on microstructure and mechanical properties of Mg alloys.” Advances in Materials and Processing Technologies 8, no. 3 (2022): 2405–2428. [Google Scholar]
  25. Minaeian, B., & Ahangari, K. (2013). Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arabian Journal of Geosciences, 6, 1925–1931. [Google Scholar]
  26. Alkorbi, A. S., Kumar, K. Y., Prashanth, M. K., Parashuram, L., Abate, A., Alharti, F. A., … & Raghu, M. S. (2022). Samarium vanadate affixed sulfur self doped g-C3N4 heterojunction; photocatalytic, photoelectrocatalytic hydrogen evolution and dye degradation. International Journal of Hydrogen Energy, 47(26), 12988–13003. [Google Scholar]
  27. Gupta, Priyanka, Nakul Gupta, Kuldeep K. Saxena, and Sudhir Goyal. “A novel hybrid soft computing model using stacking with ensemble method for estimation of compressive strength of geopolymer composite.” Advances in Materials and Processing Technologies 8, no. sup3 (2022): 1494–1509. [Google Scholar]
  28. Kumar, C. P., Raghu, M. S., Prathibha, B. S., Prashanth, M. K., Kanthimathi, G., Kumar, K. Y., … & Alharthi, F. A. (2021). Discovery of a novel series of substituted quinolines acting as anticancer agents and selective EGFR blocker: Molecular docking study. Bioorganic & Medicinal Chemistry Letters, 44, 128118. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.