Open Access
Issue
E3S Web Conf.
Volume 522, 2024
2023 9th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2023)
Article Number 01025
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202452201025
Published online 07 May 2024
  1. Hinterstoisser S., Holzer S., Cagniart C., et al. Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes[C]// IEEE International Conference on Computer Vision, ICCV, Barcelona, Spain, November 6-13, 2011: 858-865. [Google Scholar]
  2. Hinterstoisser S., Cagniart C., Ilic S., et al. Gradient response maps for real-time detection of textureless objects[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(5):876–888. [CrossRef] [PubMed] [Google Scholar]
  3. Hinterstoisser S., Lepetit V., Ilic S., et al. Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes[C]// Proceedings of the 12th international conference on Computer Vision - Volume Part III. SpringerVerlag, 2012: 548-562. [Google Scholar]
  4. Zhang Z. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 1994, 13(2):119–152. [CrossRef] [Google Scholar]
  5. Wu X. R., Huang G. M., Sun L. N. Fast visual identification and location algorithm for industrial sorting robots based on deep learning[J]. Robot, 2016, 38(6):711–719. [Google Scholar]
  6. Du X. D., Cai Y. H., Lu T., et al. A robotic grasping method based on deep learning[J]. Robot, 2017, 39 (6): 820-828, 837. [Google Scholar]
  7. Xia J., Qian K., Ma X. D., et al. Fast planar grasp pose detection for robot based on cascaded deep convolutional neural networks [J]. Robot, 2018, 40(6):794–802. [Google Scholar]
  8. Su H., Qi C. R., Li Y., et al. Render for CNN:Viewpoint esti mation in images using CNNs trained with rendered 3D model views[C]//IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2015: 2686-2694. [Google Scholar]
  9. C.Y. Wang, A. Bochkovskiy, H.Y.M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” arXiv preprint, 2022, DOI: 10.48550/arXiv.2207.02696. [Google Scholar]
  10. Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations; proceedings of the Seventh IEEE International Conference on Computer Vision, F., 1999 [C]. [Google Scholar]
  11. T. Hodan, P. Haluza, S. Obdrzalek, J. Matas, M. Lourakis and X. Zabulis, “T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-Less Objects,” 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 2017, pp. 880-888, DOI: 10.1109/WACV.2017.103 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.