Open Access
Issue |
E3S Web Conf.
Volume 523, 2024
53rd AiCARR International Conference “From NZEB to ZEB: The Buildings of the Next Decades for a Healthy and Sustainable Future”
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 14 | |
Section | Integration of Control and Building Automation Systems | |
DOI | https://doi.org/10.1051/e3sconf/202452302002 | |
Published online | 07 May 2024 |
- EEA European Environment Agency, “EEA greenhouse gases data viewer,” EEA greenhouse gases. Accessed: Dec. 22, 2023. [Online]. Available: https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer [Google Scholar]
- A. Thonipara, P. Runst, C. Ochsner, and K. Bizer, “Energy efficiency of residential buildings in the European Union-An exploratory analysis of cross-country consumption patterns” (2019) doi: 10.1016/j.enpol.2019.03.003. [Google Scholar]
- V. S. K. V. Harish and A. Kumar, “A review on modeling and simulation of building energy systems,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 1272–1292 (Apr. 2016) doi: 10.1016/J.RSER.2015.12.040. [CrossRef] [Google Scholar]
- T. Ahmad, H. Chen, Y. Guo, and J. Wang, “A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review,” Energy Build, vol. 165, pp. 301–320 (Apr. 2018) doi: 10.1016/J.ENBUILD.2018.01.017. [CrossRef] [Google Scholar]
- S. Schneider, P. Hollmuller, J. Chambers, and M. Patel, “A Heat Demand Load Curve Model of the Swiss National Territory,” IOP Conf Ser Earth Environ Sci, vol. 290, no. 1 (2019) doi: 10.1088/1755-1315/290/1/012107. [CrossRef] [Google Scholar]
- A. Chmielewska, “Fluctuating temperature of the mains water throughout the year and its influence on the consumption of energy for the purposes of DHW preparation,” E3S Web of Conferences, vol. 44 (2018) doi: 10.1051/e3sconf/20184400017. [CrossRef] [EDP Sciences] [Google Scholar]
- I. Meireles, V. Sousa, B. Bleys, and B. Poncelet, “Domestic hot water consumption pattern: Relation with total water consumption and air temperature,” Renewable and Sustainable Energy Reviews, vol. 157, p. 112035 (Apr. 2022) doi: 10.1016/J.RSER.2021.112035. [CrossRef] [Google Scholar]
- D. Ivanko, Å. Lekang Sørensen, and N. Nord, “Splitting measurements of the total heat demand in a hotel into domestic hot water and space heating heat use,” (2020) doi: 10.1016/j.energy.2020.119685. [Google Scholar]
- L. Pedersen, Load Modelling of Buildings in Mixed Energy Distribution Systems, no. February. 2007. [Online]. Available: http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:122458 [Google Scholar]
- P. Bacher, P. Anton de Saint-Aubain, L. Engbo Christiansen, and H. Madsen, “Non-parametric method for separating domestic hot water heating spikes and space heating,” Energy Build, vol. 130, pp. 107–112 (2016) doi: 10.1016/j.enbuild.2016.08.037. [CrossRef] [Google Scholar]
- A. Marszal-Pomianowska, C. Zhang, M. Pomianowski, K. Gram-Hanssen, and A. R. Hansen, “Simple methodology to estimate the mean hourly and the daily profiles of domestic hot water demand from hourly total heating readings,” Energy Build, vol. 184, pp. 53–64 (2019) doi: 10.1016/j.enbuild.2018.11.035. [CrossRef] [Google Scholar]
- M. Aydinalp-Koksal and V. I. Ugursal, “Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector,” (2007) doi: 10.1016/j.apenergy.2006.09.012. [Google Scholar]
- D. Fischer, T. Wolf, J. Scherer, and B. Wille-Haussmann, “A stochastic bottom-up model for space heating and domestic hot water load profiles for German households,” Energy Build, vol. 124, pp. 120–128 (2016) doi: 10.1016/j.enbuild.2016.04.069. [CrossRef] [Google Scholar]
- J. Wiehagen and J. L. Sikora, “Domestic Hot Water System Modeling for the Design of Energy Efficient Systems,” National Renewable Energy Laboratory Report (2002) [Online]. Available: www.nahbrc.org [Google Scholar]
- D. Ivanko, H. T. Walnum, and N. Nord, “Development and analysis of hourly DHW heat use profiles in nursing homes in Norway,” Energy Build, vol. 222, p. 110070 (2020) doi: 10.1016/j.enbuild.2020.110070. [CrossRef] [Google Scholar]
- C. Deb and A. Schlueter, “Review of data-driven energy modelling techniques for building retrofit,” Renewable and Sustainable Energy Reviews, vol. 144, p. 110990 (Jul. 2021) doi: 10.1016/J.RSER.2021.110990. [CrossRef] [Google Scholar]
- M. Lumbreras, G. Diarce, K. Martin, R. Garay-Martinez, and B. Arregi, “Unsupervised recognition and prediction of daily patterns in heating loads in buildings,” Journal of Building Engineering, vol. 65, p. 105732 (Apr. 2023) doi: 10.1016/J.JOBE.2022.105732. [CrossRef] [Google Scholar]
- M. Lumbreras et al., “Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters,” Energy, vol. 239, p. 122318 (Jan. 2022) doi: 10.1016/J.ENERGY.2021.122318. [CrossRef] [Google Scholar]
- T. Tereshchenko, D. Ivanko, N. Nord, and I. Sartori, “Analysis of energy signatures and planning of heating and domestic hot water energy use in buildings in Norway,” E3S Web of Conferences, vol. 111, p. 06009 (Aug. 2019) doi: 10.1051/E3SCONF/201911106009. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Pedersen and R. Ulseth, “Method for load modelling of heat and electricity demand Method for Load Modelling of Heat and Electricity Demand,” 10th International Symposium on District Heating and Cooling, vol. Sektion 5 b, no. Heat/cold generation, 2006. [Google Scholar]
- K. B. Lindberg and G. Doorman, “Hourly load modelling of non-residential building stock,” 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013 (2013) doi: 10.1109/PTC.2013.6652495. [Google Scholar]
- M. Eriksson, J. Akander, and B. Moshfegh, “Development and validation of energy signature method – Case study on a multi-family building in Sweden before and after deep renovation,” Energy Build, vol. 210, p. 109756 (2020) doi: 10.1016/j.enbuild.2020.109756. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.