Open Access
Issue
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
Article Number 01004
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202452601004
Published online 20 May 2024
  1. Raihan, A., & Bari, A.M. (2024). Energy-economy-environment nexus in China: The role of renewable energies toward carbon neutrality. Innovation and Green Development, 3(3), 100139. https://doi.org/10.1016/j.igd.2024.100139 [CrossRef] [Google Scholar]
  2. Adewumi, A. (2024). Sustainable energy solutions and climate change: A policy review of emerging trends and global responses. World Journal of Advanced Research and Reviews, 21(2), 408–420. https://doi.org/10.30574/wjarr.2024.21.2.0474 [CrossRef] [Google Scholar]
  3. Bondarenko, V., Salieiev, I., Kovalevska, I., Chervatiuk, V., Malashkevych, D., Shyshov, M., & Chernyak, V. (2023). A new concept for complex mining of mineral raw material resources from DTEK coal mines based on sustainable development and ESG strategy. Mining of Mineral Deposits, 17(1), 1–16. https://doi.org/10.33271/mining17.01.001 [CrossRef] [Google Scholar]
  4. Akimov, O., Troschinsky, V., Karpa, M., Ventsel, V., & Akimova, L. (2020). International experience of public administration in the area of national security. Journal of Legal, Ethical and Regulatory Issues, (23), 1–7. [Google Scholar]
  5. Baimukanov, S.A. (2021). Analysis of the use of energy-efficient technologies in the construction sector. Vestnik KazNRTU, 143(3), 240–246. https://doi.org/10.51301/vest.su.2021.i3.31 [CrossRef] [Google Scholar]
  6. Gavkalova, N., Lola, Y., Prokopovych, S., Akimov, O., Smalskys, V., & Akimova, L. (2022). Innovative development of renewable energy during the crisis period and its impact on the environment. Virtual Economics, 5(1), 65–77. https://doi.org/10.34021/ve.2022.05.01(4) [CrossRef] [Google Scholar]
  7. Sobko, B. Y., Lozhnikov, O. V., Chebanov, M. O., & Kriachek, V. P. (2024). Establishing the influence of the quarry depth on the indicators of cyclic flow technology during the development of non-ore deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 5–12. https://doi.org/10.33271/nvngu/2024-1/005 [CrossRef] [Google Scholar]
  8. Al-Ismail, F. S., Alam, M. S., Shafiullah, M., Hossain, M. I., & Rahman, S. M. (2023). Impacts of renewable energy generation on greenhouse gas emissions in Saudi Arabia: A comprehensive review. Sustainability, 15(6), 5069. https://doi.org/10.3390/su15065069 [CrossRef] [Google Scholar]
  9. Markevych, K., Maistro, S., Koval, V., & Paliukh, V. (2022). Mining sustainability and circular economy in the context of economic security in Ukraine. Mining of Mineral Deposits, 16(1), 101–113. https://doi.org/10.33271/mining16.01.101 [CrossRef] [Google Scholar]
  10. Bondarenko, V., Kovalevska, I., Sheka, I., & Sachko, R. (2023). Results of research on the stability of mine workings, fixed by arched supports made of composite materials, in the conditions of the Pokrovske mine administration. IOP Conference Series: Earth and Environmental Science, 1156(1) https://doi.org/10.1088/1755-1315/1156/1/012011 [CrossRef] [Google Scholar]
  11. Streck, C., Keenlyside, P., & von Unger, M. (2016). The Paris Agreement: A New Beginning. Journal for European Environmental & Planning Law, 13(1), 3–29. https://doi.org/10.1163/18760104-01301002 [CrossRef] [Google Scholar]
  12. Wang, Q., Zhang, C., & Li, R. (2022). Towards carbon neutrality by improving carbon efficiency-a system-GMM dynamic panel analysis for 131 countries’ carbon efficiency. Energy, (258), 124880. https://doi.org/10.1016/j.energy.2022.124880 [CrossRef] [Google Scholar]
  13. Dyczko, A., Kamiński, P., Stecuła, K., Prostański, D., Kopacz, M., & Kowol, D. (2021). Thermal and mechanical energy storage as a chance for energy transformation in Poland. Polityka Energetyczna – Energy Policy Journal, 24(3), 43–60. https://doi.org/10.33223/epj/141867 [CrossRef] [Google Scholar]
  14. Dong, F. (2022). Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries. Resources, Conservation and Recycling, (177), 106002. https://doi.org/10.1016/j.resconrec.2021.106002 [CrossRef] [Google Scholar]
  15. Salieiev, I. (2024). Organization of processes for complex mining and processing of mineral raw materials from coal mines in the context of the concept of sustainable development. Mining of Mineral Deposits, 18(1), 54–66. https://doi.org/10.33271/mining18.01.054 [CrossRef] [Google Scholar]
  16. Lewińska, P., & Dyczko, A. (2016). Thermal digital terrain model of a coal spoil tip–a way of improving monitoring and early diagnostics of potential spontaneous combustion areas. Journal of Ecological Engineering, 17(4). https://doi.org/10.12911/22998993/64605 [Google Scholar]
  17. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 237–238. https://doi.org/10.1201/b16354-43 [CrossRef] [Google Scholar]
  18. Kulikov, P., Aziukovskyi, O., Vahonova, O., Bondar, O., Akimova, L., & Akimov, O. (2022). Post-war Economy of Ukraine: Innovation and Investment Development Project. Economic Affairs (New Delhi), 67(5), 943–959. https://doi.org/10.46852/0424-2513.5.2022.30 [Google Scholar]
  19. Saik, P., Cherniaiev, O., Anisimov, O., Dychkovskyi, R., & Adamchuk, A. (2023). Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods. Mining of Mineral Deposits, 17(4), 91–102. https://doi.org/10.33271/mining17.04.091 [CrossRef] [Google Scholar]
  20. Huseynova, A., & Mazanova, O. (2023). Short-term forecasting of gross domestic product. Science, Technologies, Innovations, (2), 3–11. http://doi.org/10.35668/2520-6524-2023-2-01 [CrossRef] [Google Scholar]
  21. Svitlichnyy, O. (2023). Climate Policy of Ukraine in the context of the European Green Course: theoretical and legal aspect. Visegrad Journal on Human Rights, (5), 104–108. https://doi.org/10.61345/1339-7915.2023.5.14 [CrossRef] [Google Scholar]
  22. Dychkovskyi, R., Shavarskyi, J., Cabana, E.C., & Smoliński, A. (2019). Characteristic of possible obtained s during the well underground coal gasification. Solid State Phenomena, (291), 52–62. https://doi.org/10.4028/www.scientific.net/SSP.291.52 [CrossRef] [Google Scholar]
  23. Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36–42. [Google Scholar]
  24. Skyibida, O.L. (2021). Perspektyvy dekarbonizatsii promyslovosti ukrainy dlia zapobihannia zminy klimatu, Eko Forum, 41–42. [Google Scholar]
  25. Dubei, O. (2022). Strategy of compatible use of jet and plunger pump with chrome parts in oil well. Energies, 15(1), 83. https://doi.org/10.3390/en15010083 [Google Scholar]
  26. Dyczko, A., Malec, M., Szweda, S., & Figiel, A. (2021). Impact Assessment of Run-of-Mine Dilution on Hard Coal Production Efficiency. Acta Montanistica Slovaca, 26(3). https://doi.org/10.46544/AMS.v26i3.11 [Google Scholar]
  27. Dyczko, A. (2007). Thin coal seams, their role in the reserve base of Poland. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 81–87. https://doi.org/10.1201/noe0415436700.ch10 [Google Scholar]
  28. Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits–The value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450 [CrossRef] [Google Scholar]
  29. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, (10), 878977. https://doi.org/10.3389/fenvs.2022.878977 [CrossRef] [Google Scholar]
  30. Shavarskyi, Ia., Falshtynskyi, V., Dychkovskyi, R., Akimov, O., Sala, D., & Buketov, V. (2022). Management of the longwall face advance on the stress-strain state of rock mass. Mining of Mineral Deposits, 16(3), 78–85. https://doi.org/10.33271/mining16.03.078 [CrossRef] [Google Scholar]
  31. Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., & Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 107–114. [Google Scholar]
  32. Zablodska, I.V., & Rohozian, Yu. S. (2020). Fair transformation for coal-mining regions: world experience and legal aspect. Economics and Law, (2), 14–31. https://doi.org/10.15407/econlaw.2020.02.014 [CrossRef] [Google Scholar]
  33. Koveria, A., Kieush, L., Usenko, A., & Sova, A. (2023). Study of cellulose additive effect on the caking properties of coal. Mining of Mineral Deposits, 17(2), 1–8. https://doi.org/10.33271/mining17.02.001 [CrossRef] [Google Scholar]
  34. Kalybekov, T., Rysbekov, K., Sandibekov, M., Bi, Y.L., & Toktarov, A. (2020). Substantiation of the intensified dump reclamation in the process of field development. Mining of Mineral Deposits, 14(2), 59–65. https://doi.org/10.33271/mining14.02.059 [CrossRef] [Google Scholar]
  35. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko Geolosko Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
  36. Bazaluk, O., Kuchyn, O., Saik, P., Soltabayeva, S., Brui, H., Lozynskyi, V., & Cherniaiev, O. Impact of ground surface subsidence caused by underground coal mining on natural gas pipeline. Scientific Reports, (13), 19327. https://doi.org/10.1038/s41598-023-46814-5 [Google Scholar]
  37. Kirin, R.S. (2021). Transformatsiia postvuhilnykh mist: pravovi aspekty. Tsyvilizatsiia: Vyklyky Suchasnosti, 163–167. [Google Scholar]
  38. Kirin, R., Yevstihnieiev, A., Vyprytskyi, A., & Sieriebriak, S. (2023). Legal aspects of mining in Ukraine: European integration vector. Mining of Mineral Deposits, 17(2), 44–52. https://doi.org/10.33271/mining17.02.044 [CrossRef] [Google Scholar]
  39. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk, Z. & Malanchuk, Y. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289–300. https://doi.org/10.29227/IM-2018-02-36 [Google Scholar]
  40. Petlovanyi, M., Lozynskyi, V., Saik, P., & Sai, K. (2019). Predicting the producing well stability in the place of its curving at the underground coal seams gasification. E3S Web of Conferences, (123), 01019. https://doi.org/10.1051/e3sconf/201912301019 [CrossRef] [EDP Sciences] [Google Scholar]
  41. Falshtynskyi, V., Lozynskyi, V., Saik, P., Dychkovskyi, R., & Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Mining of Mineral Deposits, 10(1), 16–24. https://doi.org/10.15407/mining10.01.016 [CrossRef] [Google Scholar]
  42. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221–231. https://doi.org/10.4028/www.scientific.net/SSP.277.221 [CrossRef] [Google Scholar]
  43. Falshtynskyi, V.S., Dychkovskyi, R.O., Lozynskyi, V.G., & Saik, P.B. (2013). Determination of the Technological Parameters of Borehole Underground Coal Gasification for Thin Coal Seams. Journal of Sustainable Mining, 12(3), 8–16. https://doi.org/10.7424/jsm130302 [CrossRef] [Google Scholar]
  44. Saik, P., & Berdnyk, M. (2022). Mathematical model and methods for solving heat-transfer problem during underground coal gasification. Mining of Mineral Deposits, 16(2), 87–94. https://doi.org/10.33271/mining16.02.087 [CrossRef] [Google Scholar]
  45. Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109–112. https://doi.org/10.1201/b17547-20 [Google Scholar]
  46. Lozynskyi, V. (2023). Critical review of methods for intensifying the gas generation process in the reaction channel during underground coal gasification (UCG). Mining of Mineral Deposits, 17(3), 67–85. https://doi.org/10.33271/mining17.03.067 [CrossRef] [Google Scholar]
  47. Bazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369 [CrossRef] [Google Scholar]
  48. Stańczyk, K., Kapusta, K., Wiatowski, M., Świądrowski, J., Smoliński, A., Rogut, J., & Kotyrba, A. (2012). Experimental simulation of hard coal underground gasification for hydrogen production. Fuel, 91(1), 40–50. https://doi.org/10.1016/j.fuel.2011.08.024 [CrossRef] [Google Scholar]
  49. Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., Zhautikov, B., Cabana, E. (2022). Use of magnetic fields for intensification of coal gasification process. Rudarsko-geološko-Naftni Zbornik, 37(5), 61–74. https://doi.org/10.17794/rgn.2022.5.6 [CrossRef] [Google Scholar]
  50. Feng, Y., Chen, J., & Luo, J. (2024). Life cycle cost analysis of power generation from underground coal gasification with carbon capture and storage (CCS) to measure the economic feasibility. Resources Policy, (92), 104996. https://doi.org/10.1016/j.resourpol.2024.104996 [CrossRef] [Google Scholar]
  51. Ismailova, J., Fadi, Kh., & Khakimzhan, A. (2023). Review of Geological Storage Opportunities for Carbon Capture and Storage (CCS) in Kazakhstan. Engineering Journal of Satbayev University, 145(4), 36–39. https://doi.org/10.51301/ejsu.2023.i4.06 [CrossRef] [Google Scholar]
  52. Falshtyns’kyy, V., Dychkovs’kyy, R., Stanczyk, K., & Swiadrowski, J. (2010). Analytical determination of parameters of material and thermal balance and physical parameters of a coal seam work-out on mine “Barbara”, Poland. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 161–165. [Google Scholar]
  53. Lozynskyi, V., Dychkovskyi, R., Saik, P., & Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66–79. https://doi.org/10.4028/www.scientific.net/SSP.277.66 [CrossRef] [Google Scholar]
  54. Dosmukhamedov, N.K., Zholdasbay, E.E., & Egizekov, M.G. (2022). New opportunities for the development of the coal industry: technology of waste gas purification from SO2, NOX, CO2. Engineering Journal of Satbayev University, 144(3), 5–10. https://doi.org/10.51301/ejsu.2022.i3.01 [CrossRef] [Google Scholar]
  55. Zhu, Q. (2019). Developments on CO2-utilization technologies. Clean Energy, 3(2), 85–100. https://doi.org/10.1093/ce/zkz008 [CrossRef] [Google Scholar]
  56. Dudnyk, O.M., Dunaievska, N.I., Sokolovska, I.S., Trypolskyi, A.I., & Stryzhak, P.E. (2020). Oderzhannia, ochyshchennia ta utylizatsiia vuhlekysloho hazu v protsesakh vyrobnytstva enerhii ta khimichnykh produktiv. Vuhilna teploenerhetyka: Shliakhy rekonstruktsii ta rozvytku, 46–55. [Google Scholar]
  57. Zhakishev, B.A., Kilibayev, Е.О., Aliyeva, A.K., Biyakhmetova, A.K., & Rakhymbayeva, S.E. (2021). Use of liquid carbon waste for incineration in waste furnaces. Engineering Journal of Satbayev University, 143(2), 279–284. https://doi.org/10.51301/vest.su.2021.i2.36 [Google Scholar]
  58. Paton, B.Y., et al. (2011). Sposib utylizatsii dioksydu vuhletsiu z kontsentrovanykh dzherel yoho oderzhannia. Patent No. 96669. Ukraina. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.