Open Access
Issue |
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202452601005 | |
Published online | 20 May 2024 |
- Li, J., Yan, X., Cao, Z., Yang, Z., Liang, J., Ma, T., & Liu, Q. (2020). Identification of successional trajectory over 30 Years and evaluation of reclamation effect in coal waste dumps of surface coal mine. Journal of Cleaner Production, (269), 122161. https://doi.org/10.1016/j.jclepro.2020.122161 [CrossRef] [Google Scholar]
- Popovych, V., Bosak, P., Petlovanyi, M., Telak, O., Karabyn, V., & Pinder, V. (2021). Environmental safety of phytogenic fields formation on coal mines tailings. Series of Geology and Technical Sciences, 2(446), 129–136. https://doi.org/10.32014/2021.2518-170x.44 [CrossRef] [Google Scholar]
- Petlovanyi, M., Malashkevych, D., Sai, K., Bulat, I., & Popovych, V. (2021). Granulometric composition research of mine rocks as a material for backfilling the mined-out area in coal mines. Mining of Mineral Deposits, 15(4), 122–129. https://doi.org/10.33271/mining15.04.122 [CrossRef] [Google Scholar]
- Welch, C., Barbour, S.L., & Hendry, M.J. (2021). The geochemistry and hydrology of coal waste rock dumps: A systematic global review. Science of The Total Environment, (795), 148798. https://doi.org/10.1016/j.scitotenv.2021.148798 [CrossRef] [Google Scholar]
- Petlovanyi, M., Sai, K., Malashkevych, D., Popovych, V., & Khorolskyi, A. (2023). Influence of waste rock dump placement on the geomechanical state of underground mine workings. IOP Conference Series: Earth and Environmental Science, 1156(1), 012007. https://doi.org/10.1088/1755-1315/1156/1/012007 [CrossRef] [Google Scholar]
- Popovych, V., & Voloshchyshyn, A. (2019). Features of temperature and humidity conditions of extinguishing waste heaps of coal mines in spring. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(436). 230–237. https://doi.org/10.32014/2019.2518-170X.118 [Google Scholar]
- Karabyn, V., Shtain, B., & Popovych, V. (2018). Thermal regimes of spontaneous firing coal washing waste sites. News of the academy of sciences of the republic of Kazakhstan. Series of geology and technical sciences, 3(49), 64–74. [Google Scholar]
- Danylyk, R.M. (2006). Decoratyvni vlastyvosti hidrofilnykh roslyn, perspektyvnykh dlia ozelenennia vodnykh ecosystem urbanizovanykh terytorii. Naukovyi Vìsnyk NLTU Ukrainy, 16(4), 200–204. [Google Scholar]
- Sasmaz, M., Uslu Senel, G., & Obek, E. (2020). Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey). Environmental Geochemistry and Health, 43(6), 2257–2270. https://doi.org/10.1007/s10653-020-00629-9 [Google Scholar]
- Różański, Z., Wrona, P., Pach, G., Niewiadomski, A.P., Markowska, M., Wrana, A., Frączek, R., Balcarczyk, L., Quintana, G.V., & de Paz Ruiz, D. (2022). Influence of water erosion on fire hazards in a coal waste dump – A case study. Science of the Total Environment, (834), 155350. https://doi.org/10.1016/j.scitotenv.2022.155350 [CrossRef] [Google Scholar]
- Tsalidis, G.A., Tourkodimitri, K.P., Mitko, K., Gzyl, G., Skalny, A., Posada, J.A., & Xevgenos, D. (2022). Assessing the environmental performance of a novel coal mine brine treatment technique: A case in Poland. Journal of Cleaner Production, (358), 131973. https://doi.org/10.1016/j.jclepro.2022.131973 [CrossRef] [Google Scholar]
- Ali, H.H., Fayed, M.I.A., & Lazim, I.I. (2022). Use of aquatic plants in removing pollutants and treating the wastewater: A review. Journal of Global Innovations in Agricultural Sciences, 10(2), 61–70. https://doi.org/10.22194/jgias/10.985 [CrossRef] [Google Scholar]
- Hernández-Pérez, C., Martínez-Sánchez, M. J., García-Lorenzo, M. L., Bech, J., & Pérez-Sirvent, C. (2021). Phytoremediation of potentially toxic elements using constructed wetlands in coastal areas with a mining influence. Environmental Geochemistry and Health, 43(4), 1385–1400. https://doi.org/10.1007/s10653-021-00843-z [CrossRef] [PubMed] [Google Scholar]
- Shchupakivskyi, Ya.B. (2007). Ekoloho-biolohichni umovy formuvannia roslynnosti berehovoi zony tekhnohennykh vodoim hirnychopromyslovykh pidpryiemstv. Naukovyi Vìsnyk NLTU Ukrainy, 17(4), 90–94. [Google Scholar]
- Shchupakivskyi Ya.B. (2007). Kharakterystyka roslynnosti berehovoi zony tekhnohennykh vodoim kolyshnikh sirchanykh karieriv. Naukovyi Vìsnyk NLTU Ukrainy, 17(8), 35–38. [Google Scholar]
- Mironova N.H. (2013). Roslynnist tekhnohennoho ozera Holube (Male Polissia). Naukovyi Vìsnyk NLTU Ukrainy, 23(5), 328–333. [Google Scholar]
- Billing, J.C. (1988). Design for human ecosystems: Landscape, land use and natural resources. Landscape and Urban Planning, 16(3), 291–292. https://doi.org/10.1016/0169-2046(88)90077-1 [CrossRef] [Google Scholar]
- Chmura, D., Jagodziński, A. M., Hutniczak, A., Dyczko, A., & Woźniak, G. (2022). Novel Ecosystems in the Urban-Industrial Landscape – Interesting Aspects of Environmental Knowledge Requiring Broadening: A Review. Sustainability, 14(17), 10829. https://doi.org/10.3390/su141710829 [CrossRef] [Google Scholar]
- Kuzmenko, O., Dychkovskyi, R., Petlovanyi, M., Buketov, V., Howaniec, N., & Smolinski, A. (2023). Mechanism of Interaction of Backfill Mixtures with Natural Rock Fractures within the Zone of Their Intense Manifestation while Developing Steep Ore Deposits. Sustainability, 15(6), 4889. https://doi.org/10.3390/su15064889 [CrossRef] [Google Scholar]
- Sobolev, V., Bilan, N., Dychkovskyi, R., Caseres Cabana, E., & Smolinski, A. (2020). Reasons for breaking of chemical bonds of gas molecules during movement of explosion products in cracks formed in rock mass. International Journal of Mining Science and Technology, 30(2), 265–269. https://doi.org/10.1016/j.ijmst.2020.01.002 [CrossRef] [Google Scholar]
- Wang, J., Apel, D. B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2022). Analysis of the damage mechanism of strainbursts by a global-local modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 1671–1696. https://doi.org/10.1016/j.jrmge.2022.01.009 [CrossRef] [Google Scholar]
- Finlayson, C.M., Arthington, A.H., & Pittock, J. (2018). An introduction to issues for managing freshwater ecosystems in protected areas. Freshwater Ecosystems in Protected Areas, 1–16. https://doi.org/10.4324/9781315226385-1 [Google Scholar]
- Pylypenko, H.M., Pylypenko, Yu.I., Dubiei, Yu.V., Solianyk, L.G., Pazynich, Yu.M., Buketov, V., Smoliński, A., & Magdziarczyk, M. (2023). Social capital as a factor of innovative development. Journal of Open Innovation: Technology, Market, and Complexity, 9(3), 100118. https://doi.org/10.1016/j.joitmc.2023.100118 [CrossRef] [Google Scholar]
- Ryś, K., Chmura, D., Dyczko, A., & Woźniak, G. (2024). The Biomass Amount of Spontaneous Vegetation Concerning the Abiotic Habitat Conditions in Coal Mine Heaps as Novel Ecosystems. Journal of Ecological Engineering, 25(5), 79–100. https://doi.org/10.12911/22998993/185586 [CrossRef] [Google Scholar]
- Lange, G.-M. (1999). Strategic Planning for Sustainable Development in Coastal Zone Regions: Using Natural Resource Accounts. Perspectives on Integrated Coastal Zone Management, 55–68. https://doi.org/10.1007/978-3-642-60103-3_4 [CrossRef] [Google Scholar]
- Zapukhliak, I., Zaiachuk, Y., Polyanska, A., & Kinash, I. (2019). Applying fuzzy logic to assessment of enterprise readiness for changes. Management Science Letters, 2277–2290. https://doi.org/10.5267/j.msl.2019.7.026 [CrossRef] [Google Scholar]
- Ryś, K., Chmura, D., Prostański, D., & Woźniak, G. (2023). Biomass Amounts of Spontaneous Vegetation on Post-Coal Mine Novel Ecosystem in Relation to Biotic Parameters. Energies, 16(22), 7513. https://doi.org/10.3390/en16227513 [CrossRef] [Google Scholar]
- Yang, D., Zhao, J., Suhail, S. A., Ahmad, W., Kamiński, P., Dyczko, A., Salmi, A., & Mohamed, A. (2022). Investigating the Ultrasonic Pulse Velocity of Concrete Containing Waste Marble Dust and Its Estimation Using Artificial Intelligence. Materials, 15(12), 4311. https://doi.org/10.3390/ma15124311 [CrossRef] [PubMed] [Google Scholar]
- Spiering, D.J., Larsen, C.P.S., & Potts, D.L. (2020). Modelling vegetation succession in postindustrial ecosystems using vegetation classification in aerial photographs, Buffalo, New York. Landscape and Urban Planning, (198), 103792. https://doi.org/10.1016/j.landurbplan.2020.103792 [CrossRef] [Google Scholar]
- Zhang, J., Xu, P., & Gao, X. (2021). Multi-scale particles optimization for some rheological properties of Eco-SCC: Modelling and experimental study. Construction and Building Materials, (308), 125151. https://doi.org/10.1016/j.conbuildmat.2021.125151 [CrossRef] [Google Scholar]
- Mantalos, P., & Shukur, G. (2008). Bootstrap methods for autocorrelation test with uncorrelated but not independent errors. Economic Modelling, 25(5), 1040–1050. https://doi.org/10.1016/j.econmod.2008.01.010 [CrossRef] [Google Scholar]
- Yoshioka, Y., Ose, Y., Goto, M., & Hikino, H. (1987). Relations between the test methods for eco-toxicity. Eisei Kagaku, 33(1), 11–19. https://doi.org/10.1248/jhs1956.33.11 [CrossRef] [Google Scholar]
- Kucheriavyi, V.P. (2001). Ekolohiia. Lviv, Ukraina: Svit, 520 s. [Google Scholar]
- Cronquist, A. (1988). The evolution and classification of flowering plants (2nd ed.). Bronx, N.Y., USA: New York Botanical Garden, 555 p. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.