Open Access
Issue
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
Article Number 01006
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202452601006
Published online 20 May 2024
  1. Wilczynska, B.N. (2017). Filtration of Components of Sieroszowice Mine Copper Ore Deposit Variogram Models by Means of Estimation Ordinary Kriging Technique. Geoinformatics & Geostatistics: An Overview, 06(01). https://doi.org/10.4172/2327-4581.1000175 [CrossRef] [Google Scholar]
  2. Kicki, J., & Dyczko, A. (2010). The concept of automation and monitoring of the production process in an underground mine. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 245–253. [Google Scholar]
  3. Sala, D., Pavlov, K., Pavlova, О., Dychkovskyi, R., Ryskykh, V., & Pysanko, S. (2024). Determining the level of efficiency of gas distribution enterprises in the Western Region of Ukraine. Inżynieria Mineralna, 2(2(52)). https://doi.org/10.29227/im-2023-02-64 [Google Scholar]
  4. Polyanska, A., Pazynich, Y., Mykhailyshyn, K., & Buketov, V. (2023). Energy transition: the future of energy on the base of smart specialization. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 89–95. https://doi.org/10.33271/nvngu/2023-4/089 [CrossRef] [Google Scholar]
  5. Dychkovskiy, R., & Bondarenko, V. (2006). Methods of Extraction of Thin and Rather Thin Coal Seams in the Works of the Scientists of the Underground Mining Faculty (National Mining University). International Mining Forum 2006, New Technological Solutions in Underground Mining, 21–25. https://doi.org/10.1201/noe0415401173.ch3 [Google Scholar]
  6. Maletic, E., & Grunow, A. (2023). The Polar Rock Repository: an invaluable resource for climate analyses. Goldschmidt 2023 Abstracts. https://doi.org/10.7185/gold2023.17030 [Google Scholar]
  7. Khan, M. M., & Krige, G. J. (2001). Evaluation of the Structural Integrity of an Aging Mine Shaft. Structural Engineering, Mechanics and Computation, 1217–1223. https://doi.org/10.1016/b978008043948-8/50135-1 [CrossRef] [Google Scholar]
  8. Kamiński, P., Dyczko, A., & Prostański, D. (2021). Virtual Simulations of a New Construction of the Artificial Shaft Bottom (Shaft Safety Platform) for Use in Mine Shafts. Energies, 14(8), 2110. https://doi.org/10.3390/en14082110 [CrossRef] [Google Scholar]
  9. Babets, D., Sdvyzhkova, O., Hapieiev, S., Shashenko, O., & Prykhodchenko, V. (2023). Multifactorial analysis of a gateroad stability at goaf interface during longwall coal mining – A case study. Mining of Mineral Deposits, 17(2), 9–19. https://doi.org/10.33271/mining17.02.009 [CrossRef] [Google Scholar]
  10. Haidai, O., Ruskykh, V., Ulanova, N., Prykhodko, V., Cabana, E.C., Dychkovskyi, R., Howaniec, N., & Smolinski, A. (2022). Mine Field Preparation and Coal Mining in Western Donbas: Energy Security of Ukraine – A Case Study. Energies, 15(13), 4653. https://doi.org/10.3390/en15134653 [CrossRef] [Google Scholar]
  11. Trueman, A. M., McLaughlin, M. J., Mosley, L. M., & Fitzpatrick, R. W. (2020). Composition and dissolution kinetics of jarosite-rich segregations extracted from an acid sulfate soil with sulfuric material. Chemical Geology, 543, 119606. https://doi.org/10.1016/j.chemgeo.2020.119606 [CrossRef] [Google Scholar]
  12. Kononenko, M., Khomenko, O., Sadovenko, I., Sobolev, V., Pazynich, Y., & Smoliński, A. (2023). Managing the rock mass destruction under the explosion. Journal of Sustainable Mining, 22(3), 240. https://doi.org/10.46873/2300-3960.1391 [CrossRef] [Google Scholar]
  13. Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Dubiei, Yu.V., Cáceres Cabana, E., Shavarskyi, Ia.T. (2019). Technological, lithological and economic aspects of data geometrization in coal mining, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 22–28. https://doi.org/10.29202/nvngu/2019-5/4 [Google Scholar]
  14. Kuzmenko, O., Dychkovskyi, R., Petlovanyi, M., Buketov, V., Howaniec, N., & Smolinski, A. (2023). Mechanism of Interaction of Backfill Mixtures with Natural Rock Fractures within the Zone of Their Intense Manifestation while Developing Steep Ore Deposits. Sustainability, 15(6), 4889. https://doi.org/10.3390/su15064889 [CrossRef] [Google Scholar]
  15. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, (10), 878977. https://doi.org/10.3389/fenvs.2022.878977 [CrossRef] [Google Scholar]
  16. Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2–19. https://doi.org/10.46873/2300-3960.1371 [CrossRef] [Google Scholar]
  17. Rysbekov, K.B., Huayang, D., & Nurpeisova, M.B. (2023). Modern monitoring tools – effective way to ensure safety in subsoil use. Engineering Journal of Satbayev University, 144(3), 34–40. https://doi.org/10.51301/ejsu.2022.i3.06 [CrossRef] [Google Scholar]
  18. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023. https://doi.org/10.1051/e3sconf/202123001023 [CrossRef] [EDP Sciences] [Google Scholar]
  19. RMED. (2011). Regulation of the Minister of the Environment of December 22, 2011 on the geological documentation of mineral deposits. Journal of Laws of the Republic of Poland, (22), 1–3. [Google Scholar]
  20. Szamałek, K., & Wierchowiec, J. (2015). Znaczenie i rola standardu JORC jako podstawy bankowego studium wykonalności projektów górniczych dla oceny rentowności projektu. Gospodarka Surowcami Mineralnymi, 31(3), 25–44. https://doi.org/10.1515/gospo-2015-0025 [CrossRef] [Google Scholar]
  21. Sobczyk, E.J., & Kopacz, M. (2018). Assessing geological and mining condition nuisance and its impact on the cost of exploitation in hard coal mines with the use of a multi-criterion method. Archives of Mining Sciences, 63(3), 665–686. https://doi.org/10.24425/123690 [Google Scholar]
  22. Galos, K., Nieć, M., Saługa, P. W., & Uberman, R. (2015). The basic problems of mineral resources valuation methodologies within the framework of System of Integrated Environmental and Economic Accounts. Gospodarka Surowcami Mineralnymi, 31(4), 5–20. https://doi.org/10.1515/gospo-2015-0034 [CrossRef] [Google Scholar]
  23. Koval, V., Kryshtal, H., Udovychenko, V., Soloviova, O., Froter, O., Kokorina, V., & Veretin, L. (2023). Review of mineral resource management in a circular economy infrastructure. Mining of Mineral Deposits, 17(2), 61–70. https://doi.org/10.33271/mining17.02.061 [CrossRef] [Google Scholar]
  24. Del Castillo, M.F., & Dimitrakopoulos, R. (2019). Dynamically optimizing the strategic plan of mining complexes under supply uncertainty. Resources Policy, (60), 83–93. https://doi.org/10.1016/j.resourpol.2018.11.019 [CrossRef] [Google Scholar]
  25. Hou, J., Li, G., Hu, N., & Wang, H. (2019). Simultaneous integrated optimization for underground mine planning: application and risk analysis of geological uncertainty in a gold deposit. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 25(2), 153–174. https://doi.org/10.24425/gsm.2019.128518 [Google Scholar]
  26. Kopacz, M., Malinowski, L., Kaczmarzewski, S., & Kamiński P. (2020). Optimizing mining production plan as a trade-off between resources utilization and economic targets in underground coal mines. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 36(4), 49–74. https://doi.org/10.24425/gsm.2020.133948 [Google Scholar]
  27. Brzychczy, E. (2007). Modelling and optimisation method of mining works in hard coal mine with an application of stochastic networks. Part 5: Application of evolved method in hard coal mine. Mineral Resources Management, 23(2), 135–151. [Google Scholar]
  28. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
  29. Nhleko, A., Tholana, T., & Neingo, P. (2018). A review of underground stope boundary optimization algorithms. Resources Policy, (56), 59–69. https://doi.org/10.1016/j.resourpol.2017.12.004 [CrossRef] [Google Scholar]
  30. Bartoszek, S., Stankiewicz, K., Kost, G., Ćwikła, G., & Dyczko, A. (2021). Research on Ultrasonic Transducers to Accurately Determine Distances in a Coal Mine Conditions. Energies, 14(9), 2532. https://doi.org/10.3390/en14092532 [CrossRef] [Google Scholar]
  31. Dychkovskyi, R., Falshtynskyi, V., Ruskykh, V., Cabana, E., & Kosobokov, O. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, (60), 00014. https://doi.org/10.1051/e3sconf/20186000014 [CrossRef] [EDP Sciences] [Google Scholar]
  32. Boskma, K. (1982). Aggregation and the design of models for medium-term planning of production. European Journal of Operational Research, 10(3), 244–249. https://doi.org/10.1016/0377-2217(82)90223-5 [CrossRef] [Google Scholar]
  33. Little, J., & Topal, E. (2011). Strategies to assist in obtaining an optimal solution for an underground mine planning problem using Mixed Integer Programming. International Journal of Mining and Mineral Engineering, 3(2), 152. https://doi.org/10.1504/ijmme.2011.042429 [Google Scholar]
  34. Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V., & Dychkovskyi, R. (2022). Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko-Geološko-Naftni Zbornik, 37(5), 169–180. https://doi.org/10.17794/rgn.2022.5.14 [CrossRef] [Google Scholar]
  35. Sandanayake, D.S.S., Topal, E., & Asad, M.W.A. (2015). Designing an optimal stope layout for underground mining based on a heuristic algorithm. International Journal of Mining Science and Technology, 25(5), 767–772. https://doi.org/10.1016/j.ijmst.2015.07.011 [CrossRef] [Google Scholar]
  36. Erdogan, G., Cigla, M., Topal, E., & Yavuz, M. (2017). Implementation and comparison of four stope boundary optimization algorithms in an existing underground mine. International Journal of Mining, Reclamation and Environment, 31(6), 389–403. https://doi.org/10.1080/17480930.2017.1331083 [CrossRef] [Google Scholar]
  37. Lewinska, P., Matula, R., & Dyczko, A. (2017). Integration of Thermal Digital 3D Model and a MASW (Multichannel Analysis of Surface Wave) as a Means of Improving Monitoring of Spoil Tip Stability. 2017 Baltic Geodetic Congress (BGC Geomatics). https://doi.org/10.1109/bgc.geomatics.2017.29 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.