Open Access
Issue
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
Article Number 01007
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202452601007
Published online 20 May 2024
  1. Sanches, A., Almeida, J., Sá Caetano, P., & Vieira, R. (2017). A 3D Geological Model of a Vein Deposit Built by Aggregating Morphological and Mineral Grade Data. Minerals, 7(12), 234. https://doi.org/10.3390/min7120234avne [CrossRef] [Google Scholar]
  2. Kaczmarzewski, S., Kulpa, J., & Olczak, P. (2023). Analysis of variability of payback time of investments in various types of RES micro-installations for enterprises purchasing electricity and gas at the TGE on micro-installation scale. Rynek Energii, 6(169), 81–88. [Google Scholar]
  3. Arias, M., Nuñez, P., Arias, D., Gumiel, P., Castañón, C., Fuertes-Blanco, J., & Martin-Izard, A. (2021). 3D Geological Model of the Touro Cu Deposit, A World-Class Mafic-Siliciclastic VMS Deposit in the NW of the Iberian Peninsula. Minerals, 11(1), 85. https://doi.org/10.3390/min11010085 [CrossRef] [Google Scholar]
  4. Kononenko, M., Khomenko, O., Sadovenko, I., Sobolev, V., Pazynich, Y., & Smoliński, A. (2023). Managing the rock mass destruction under the explosion. Journal of Sustainable Mining, 22(3), 240. https://doi.org/10.46873/2300-3960.1391 [CrossRef] [Google Scholar]
  5. Polyanska, A., Pazynich, Y., Sabyrova, M., & Verbovska, L. (2023). Directions and prospects of the development of educational services in conditions of energy transformation: the aspect of the coal industry. Polityka Energetyczna – Energy Policy Journal, 26(2), 195–216. https://doi.org/10.33223/epj/162054 [CrossRef] [Google Scholar]
  6. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023. https://doi.org/10.1051/e3sconf/202123001023 [CrossRef] [EDP Sciences] [Google Scholar]
  7. Polyanska, A., Pazynich, Y., Mykhailyshyn, K., & Buketov, V. (2023). Energy transition: the future of energy on the base of smart specialization. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 89–95. https://doi.org/10.33271/nvngu/2023-4/089 [CrossRef] [Google Scholar]
  8. Kosobokov, O., Falshtynskyi, V., Ruskykh, V., & Cabana, E. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, (60), 00014. https://doi.org/10.1051/e3sconf/20186000014 [CrossRef] [EDP Sciences] [Google Scholar]
  9. Seheda, M. S., Beshta, O. S., Gogolyuk, P. F., Blyznak, Yu. V., Dychkovskyi, R. D., & Smoliński, A. (2024). Mathematical model for the management of the wave processes in three-winding transformers with consideration of the main magnetic flux in mining industry. Journal of Sustainable Mining, 23(1), 20–39. https://doi.org/10.46873/2300-3960.1402 [CrossRef] [Google Scholar]
  10. Pylypenko, H. M., Pylypenko, Yu. I., Dubiei, Yu. V., Solianyk, L. G., Pazynich, Yu. M., Buketov, V., Smoliński, A., & Magdziarczyk, M. (2023). Social capital as a factor of innovative development. Journal of Open Innovation: Technology, Market, and Complexity, 9(3), 100118. https://doi.org/10.1016/j.joitmc.2023.10011 [CrossRef] [Google Scholar]
  11. Chmura, D., Jagodziński, A. M., Hutniczak, A., Dyczko, A., & Woźniak, G. (2022). Novel Ecosystems in the Urban-Industrial Landscape–Interesting Aspects of Environmental Knowledge Requiring Broadening: A Review. Sustainability, 14(17), 10829. https://doi.org/10.3390/su141710829 [CrossRef] [Google Scholar]
  12. Wang, Z., Qu, H., Wu, Z., Yang, H., & Du, Q. (2016). Formal representation of 3D structural geological models. Computers & Geosciences, (90), 10–23. https://doi.org/10.1016/j.cageo.2016.02.007 [CrossRef] [Google Scholar]
  13. Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2–19. https://doi.org/10.46873/2300-3960.1371 [CrossRef] [Google Scholar]
  14. Kopacz, M., Kulpa, J., Galica, D., & Olczak, P. (2020). The influence of variability models for selected geological parameters on the resource base and economic efficiency measures - Example of coking coal deposit. Resources Policy, (68), 101711. https://doi.org/10.1016/j.resourpol.2020.101711 [CrossRef] [Google Scholar]
  15. Sosnowski, P. (2020). A New Look at the Geological Structure of the Knurów Hard Coal Deposit in Light of Model Tests. New Trends in Production Engineering, 3(1), 186–196. https://doi.org/10.2478/ntpe-2020-0015 [CrossRef] [Google Scholar]
  16. Erdem, Ö., & Güyagüler, T. (2011). Geological Modeling of Layer Type Deposits in Mine Design Software Environment. In IV Balkan Mining Congress (pp. 1–11). Ljubljana. [Google Scholar]
  17. Ribeiro, L., & Gomes, L. (2021). Describing Structure and Complex Interactions in Multi-Agent-Based Industrial Cyber-Physical Systems. IEEE Access, (9), 153126–153141. https://doi.org/10.1109/access.2021.3127344 [CrossRef] [Google Scholar]
  18. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
  19. Krawczyk, A. (2023). Mining Geomatics. ISPRS International Journal of Geo-Information, 12(7), 278. https://doi.org/10.3390/ijgi12070278 [CrossRef] [Google Scholar]
  20. Saber, E.S.A., Ismael, A., Embaby, A., Darwish, Y.Z., Selim, S.M., Gomaa, E., & Arafat, A.A. (2023). Geological and geostatistical analysis for equivalent uranium and thorium mineralization, Gattar-V Eastern Desert, Egypt. Mining of Mineral Deposits, 17(4), 18–28. https://doi.org/10.33271/mining17.04.018 [CrossRef] [Google Scholar]
  21. Shirokiy, P.G., Zavaley, V.A., Auelkhan, Ye.S., & Alzhigitova M.M. (2024). Application of geostatistical interpolation methods for filtration coefficients on the Nurkazgan East field using the Python programming language. Engineering Journal of Satbayev University, 146(1), 23–29. https://doi.org/10.51301/ejsu.2024.i1.04 [Google Scholar]
  22. Galica D. (2023). Cyfrowy model geologiczny złoża jako narzędzie wspomagania decyzji w działalności kopalni węgla kamiennego. Kraków: Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, 199. [Google Scholar]
  23. Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits – The value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450 [CrossRef] [Google Scholar]
  24. Kopacz, M., Malinowski, L. Kaczmarzewski, S., & Kamiński, P. (2020) Optimizing mining production plan as a trade-off between resources utilization and economic targets in underground coal mines. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 36(4), 49–74. https://doi.org/10.24425/gsm.2020.133948 [Google Scholar]
  25. ZP. (2006). Supplement No. 1 to the Geological Documentation of the Pawłowice 1 deposit on December 31. MWPI, 341. [Google Scholar]
  26. GZP. (2016). Supplement No. 1 to the Geological Documentation of the Pawłowice 1 deposit on December 31. MWPI, 341. [Google Scholar]
  27. RGDMD. (2015). Regulation on the geological documentation of mineral deposits, excluding hydrocarbon deposits. Journal of Laws, (987), 34. Available at: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150000987 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.