Open Access
Issue |
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/e3sconf/202452601021 | |
Published online | 20 May 2024 |
- Gayday, O., & Gurgiy, N. (2015). The questions of main drift protection in Western Donbas coal mines. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 271–274. https://doi.org/10.1201/b19901-48 [CrossRef] [Google Scholar]
- Haidai, O., Ruskykh, V., Ulanova, N., Prykhodko, V., Cabana, E., Dychkovskyi, R., Howaniec, N., & Smolinski, A. (2022). Mine Field Preparation and Coal Mining in Western Donbas: Energy Security of Ukraine – A Case Study. Energies, (15), 4653. https://doi.org/10.3390/en15134653 [CrossRef] [Google Scholar]
- Fecko, P., & Tora, B. (2013). Coal waste: handling, pollution impacts and utilization. The Coal Handbook. Towards Cleaner Production, 63–84. https://doi.org/10.1533/9781782421177.1.63 [CrossRef] [Google Scholar]
- Pavlychenko, A., Haidai, O., Firsova, V., Ruskykh, V., Tkach, І. (2020). Technological directions of coal beneficiation waste processing (in Ukrainian). Collection of scientific papers of Dnipro University of Technology, (62), 139–148. [Google Scholar]
- Haidai, O., Pavlychenko, А., Koveria, A., Ruskykh, V., Lampika, T. (2022). Determination of Granulometric Composition of Technogenic Raw Materials for Producing Composite Fuel. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 52–58. https://doi.org/10.33271/nvngu/2022-4/052 [CrossRef] [Google Scholar]
- Prykhodko, V., Ulanova, N., Haidai, O., & Klymenko, D. (2018). Mathematical modeling of tight roof periodical falling. E3S Web of Conferences. Ukrainian School of Mining Engineering, (60), 00020. https://doi.org/10.1051/e3sconf/20186000020 [CrossRef] [EDP Sciences] [Google Scholar]
- Firsova, V. (2023). To the issue of utilization of technogenic deposits as mining wastes (in Ukrainian). In Proceedings of the 4th International Scientific and Practical Internet Conference (pp. 115–118). [Google Scholar]
- Pavlychenko, А., Nikitenko, I., & Haidai, O. (2023). Relevant developments in the field of environmental protection technologies of the Dnipro University of Technology (in Ukrainian). In V International scientific and practical conference “Ecology. Environment. Energy saving” (pp. 186–189). Poltava, Ukraine: NUPP. [Google Scholar]
- Salieiev, I. (2024). Organization of processes for complex mining and processing of mineral raw materials from coal mines in the context of the concept of sustainable development. Mining of Mineral Deposits, 18(1), 54–66. https://doi.org/10.33271/mining18.01.054 [CrossRef] [Google Scholar]
- Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023. https://doi.org/10.1051/e3sconf/202123001023 [CrossRef] [EDP Sciences] [Google Scholar]
- Ofori, P., Hodgkinson, J., Khanal, M., Hapugoda, P., & Yin, J. (2022). Potential resources from coal mining and combustion waste: Australian perspective. Environment, Development and Sustainability, 25(9), 10351–10368. https://doi.org/10.1007/s10668-022-02492-3 [Google Scholar]
- Acordi, J., Simão, L., Faraco, M.N.S., Borgert, C.H., Olivo, E., Montedo, O.R.K., & Raupp-Pereira, F. (2023). Waste valorization of coal mining waste from a circular economy perspective: A Brazilian case study based on environmental and physicochemical features. Resources Policy, (80), 103243. https://doi.org/10.1016/j.resourpol.2022.103243 [CrossRef] [Google Scholar]
- Batterham, R.J. (2017). The mine of the future – even more sustainable. Minerals Engineering, (107), 2–7. https://doi.org/10.1016/j.mineng.2016.11.001 [CrossRef] [Google Scholar]
- Biletskiy, V.S., & Smirnov, V.O. (2013). Modelling of mineral beneficiation processes (in Ukrainian). Donetsk, Ukraine: Eastern Publishing House, 304 p. [Google Scholar]
- Saranchuk, V.I., Ilyashov, M.O., Oshovskiy, V.V., & Biletskiy, V.S. (2008). Fundamentals of chemistry and physics of fossil fuels (in Ukrainian). Donetsk, Ukraine: Eastern Publishing House, 640 p. [Google Scholar]
- Dyczko, A. (2023). The geological modelling of deposits, production designing and scheduling in the JSW SA Mining Group. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 39(1), 35–62. https://doi.org/10.24425/gsm.2023.144628 [Google Scholar]
- Borowski, G., & Hycnar, J. (2013). Utilization of fine coal waste as a fuel briquettes. International Journal of Coal Preparation and Utilization, 33(4), 194–204. https://doi.org/10.1080/19392699.2013.787993 [CrossRef] [Google Scholar]
- Zhang, G., Sun, Y., & Xu, Y. (2018). Review of briquette binders and briquetting mechanism. Renewable and Sustainable Energy Reviews, (82), 477–487. https://doi.org/10.1016/j.rser.2017.09.072 [CrossRef] [Google Scholar]
- Adeleke, A.A., Odusote, J.K., Ikubanni, P.P., Olabisi, A.S., & Nzerem, P. (2022). Briquetting of subbituminous coal and torrefied biomass using bentonite as inorganic binder. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-12685-5 [CrossRef] [PubMed] [Google Scholar]
- Kosturkiewicz, B., Janewicz, A., & Magdziarz, A. (2014). Results of Briquetting and Combustion Process on Binder-Free Coking Coal. Polish Journal of Environmental Studies, 23(4), 1385–1389. [Google Scholar]
- Gayday, O. (2013). Researches of structural-mechanical properties of coal tailings as disperse systems. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 327–332. https://doi.org/10.1201/b16354-60 [CrossRef] [Google Scholar]
- Polyanska, A., Pazynich, Y., Poplavska, Z., Kashchenko, Y., Psiuk, V., & Martynets, V. (2024). Conditions of Remote Work to Ensure Mobility in Project Activity. Lecture Notes in Mechanical Engineering, 151–166. https://doi.org/10.1007/978-3-031-56474-1_12 [CrossRef] [Google Scholar]
- Beshta, O., Cichoń, D., Beshta, O., Khalaimov, T., & Cabana, E. C. (2023). Analysis of the Use of Rational Electric Vehicle Battery Design as an Example of the Introduction of the Fit for 55 Package in the Real Estate Market. Energies, 16(24), 7927. https://doi.org/10.3390/en16247927 [CrossRef] [Google Scholar]
- Haq, I., Mazumder, P., & Kalamdhad, A.S. (2020). Recent advances in removal of lignin from paper industry wastewater and its industrial applications – A review. Bioresource Technology, (312), 123636. https://doi.org/10.1016/j.biortech.2020.123636 [CrossRef] [PubMed] [Google Scholar]
- Kieush, L., Boyko, M., Koveria, A., Khudyakov, O., & Ruban, A. (2019). Utilization of the Prepyrolyzed Technical Hydrolysis Lignin as a Fuel for Iron Ore Sintering. Eastern-European Journal of Enterprise Technologies, 1(6(97)), 34–39. https://doi.org/10.15587/17294061.2019.154082 [CrossRef] [Google Scholar]
- Tardy, B.L., Lizundia, E., Guizani, C., Hakkarainen, M., Sipponen, Mika H. (2023). Prospects for the integration of lignin materials into the circular economy, Materials Today, (65), 122–132, https://doi.org/10.1016/j.mattod.2023.04.001 [CrossRef] [Google Scholar]
- Peceño, B., Hurtado-Bermudez, S., Alonso-Fariñas, B., Villa-Alfageme, M., Más, J.L., & Leiva, C. (2023). Recycling Bio-Based Wastes into Road-Base Binder: Mechanical, Leaching, and Radiological Implications. Applied Sciences, 13(3), 1644. https://doi.org/10.3390/app13031644 [CrossRef] [Google Scholar]
- Haile, A., Gelebo, G.G., Tesfaye, T., Mengie, W., Mebrate, M.A., Abuhay, A., & Limeneh, D.Y. (2021). Pulp and paper mill wastes: utilizations and prospects for high value-added biomaterials. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00385-3 [CrossRef] [PubMed] [Google Scholar]
- Cherian, C., & Siddiqua, S. (2021). Engineering and environmental evaluation for utilization of recycled pulp mill fly ash as binder in sustainable road construction. Journal of Cleaner Production, (298), 126758. https://doi.org/10.1016/j.jclepro.2021.126758 [CrossRef] [Google Scholar]
- Jarnerud, T., Karasev, A. V., & Jönsson, P. G. (2019). Briquetting of Wastes from Pulp and Paper Industries by Using AOD Converter Slag as Binders for Application in Metallurgy. Materials, 12(18), 2888. https://doi.org/10.3390/ma12182888 [CrossRef] [PubMed] [Google Scholar]
- Simão, L., Jiusti, J., Lóh, N. J., Hotza, D., Raupp-Pereira, F., Labrincha, J. A., & Montedo, O. R. K. (2018). Structural Refinement by the Rietveld Method on Clinkers Obtained from Waste from Pulp and Paper Mills. Materials Science Forum, (912), 175–179. https://doi.org/10.4028/www.scientific.net/msf.912.175 [CrossRef] [Google Scholar]
- Ni, Z., Bi, H., Jiang, C., Sun, H., Zhou, W., Qiu, Z., & Lin, Q. (2022). Research on the co-pyrolysis of coal slime and cellulose based on TG-FTIR-MS, artificial neural network, and principal component analysis. Fuel, (320), 123960. https://doi.org/10.1016/j.fuel.2022.123960 [CrossRef] [Google Scholar]
- Kieush, L., Koveria, A., Boyko, M., Yaholnyk, M., Hrubiak, A., Molchanov, L., & Moklyak, V. (2022). Influence of biocoke on iron ore sintering performance and strength properties of sinter. Mining of Mineral Deposits, 16(2), 55–63. https://doi.org/10.33271/mining16.02.055 [CrossRef] [Google Scholar]
- Shafizadeh, A., Shahbeik, H., Rafiee, S., Fardi, Z., Karimi, K., Peng, W., Chen, X., Tabatabaei, M., & Aghbashlo, M. (2024). Machine learning-enabled analysis of product distribution and composition in biomass-coal co-pyrolysis. Fuel, (355), 129464. https://doi.org/10.1016/j.fuel.2023.129464 [CrossRef] [Google Scholar]
- Koveria, A., Kieush, L., Usenko, A., & Sova, A. (2023). Study of cellulose additive effect on the caking properties of coal. Mining of Mineral Deposits, 17(2), 1–8. https://doi.org/10.33271/mining17.02.001 [CrossRef] [Google Scholar]
- Zhang, Z., Xu, D., He, Z., & Wang, S. (2023). Synergistic interaction for catalytic co-pyrolysis of municipal paper and polyethylene terephthalate wastes coupling with deep learning methodology. Journal of Analytical and Applied Pyrolysis, (175), 106193, https://doi.org/10.1016/j.jaap.2023.106193 [CrossRef] [Google Scholar]
- Packham, D.E. (2017). Theories of Fundamental Adhesion. Handbook of Adhesion Technology, 1–31. https://doi.org/10.1007/978-3-319-42087-5_2-2 [Google Scholar]
- Wool, R.P. (2005). Polymer diffusion: reptation and interdigitation/Polymer-polymer adhesion: incompatible interfaces/Polymer-polymer adhesion: models/Polymer-polymer adhesion: molecular weight dependence/Polymer-polymer adhesion: weld strength. In Packham DE (ed) Handbook of adhesion, 2nd edn. Wiley, Chichester. [Google Scholar]
- Gaidai, A., & Sulaev, V. (2013). Tekhnologiya adgezionno-khimicheskogo okuskovaniya ugol’nykh shlamov i shtybov, burgoo uglya i torfa. Ugol’ Ukrainy, (1), 39–43. [Google Scholar]
- Sala, D., Pavlov, K., Pavlova, O., Dychkovskyi R., Ruskykh, V., & Pysanko, S. (2024). Określenie poziomu efektywności przedsiębiorstw zajmujących się dystrybucją gazu w zachodnim obwodzie Ukrainy. Inżynieria Mineralna, 2(2(52)), 109–122. https://doi.org/10.29227/im-2023-02-64 [Google Scholar]
- DIN 66116-1-73. (1973). Particle size analysis; sedimentation analysis in the gravitational field, sedimentation balance. Germany, 5. [Google Scholar]
- Baranets, V.O., Kizilova, N.M., & Datsok, O.M. (2019). Hardware and software complex for the study of sedimentation processes in technical and biological suspensions of microand nanoparticles that aggregate (in Ukrainian). Journal of V.N. Karazin Kharkiv National University. Series “Mathematical modeling. Information Technology. Automated control systems”, (42), 4–11. https://doi.org/10.26565/2304-6201-2019-42-01 [Google Scholar]
- Dumanski, A., Zabotinski, E., & Ewsejew, M. (1913). Eine Alethodezur Bestimmung der Größe kolloider Teilchen. Kolloid-Zeitschr, (12), 6–11. [CrossRef] [Google Scholar]
- Pedersen, Kai O. (1976). The development of Svedberg’s ultracentrifuge. Biophysical Chemistry, 5(1–2), 3–18. https://doi.org/10.1016/0301-4622(76)80022-1 [CrossRef] [PubMed] [Google Scholar]
- Claesson, S., Pedersen, Kai O. (1972). The Svedberg 1884-1971. Biographical Memoirs of Fellows of the Royal Society, (18), 594–627. https://doi.org/10.1098/rsbm.1972.0022 [CrossRef] [Google Scholar]
- Pavlychenko, A.V., Haidai, O.A., Firsova, V.E., & Lampika, T.V. (2020). Optymizatsiia fizyko-mekhanichnykh parametriv palyvnykh produktiv, otrymanykh pry pererobtsi vidkhodiv vuhilnoi haluzi. Zbirnyk naukovykh prats NHU, (63). P. 88–97. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.