Open Access
Issue
E3S Web Conf.
Volume 532, 2024
Second International Conference of Applied Industrial Engineering: Intelligent Production Automation and its Sustainable Development (CIIA 2024)
Article Number 01009
Number of page(s) 9
Section Integrating Sustainability Strategies and Developments in Industrial Production
DOI https://doi.org/10.1051/e3sconf/202453201009
Published online 06 June 2024
  1. R. Tu, J. Xu, A. Wang, M. Zhang, Z. Zhai, M. Hatzopoulou, Real-world emissions and fuel consumption of gasoline and hybrid light duty vehicles under local and regulatory drive cycles. Science of The Total Environment. 805, 150407 (2022). doi: 10.1016/j.scitotenv.2021.150407. [CrossRef] [Google Scholar]
  2. H. El Hafdaoui, A. Khallaayoun, K. Ouazzani, Activity and efficiency of the building sector in Morocco: A review of status and measures in Ifrane. AIMS Energy, 11(3), 454–485 (2023). doi: 10.3934/energy.2023024. [CrossRef] [Google Scholar]
  3. V. Rievaj, J. Ga ňa, F. Synák, Comparison of emissions depending on the type of vehicle engine. Logistics & Sustainable Transport. 10(1), 45–54 (2019), doi: 10.2478/jlst-20190004. [CrossRef] [Google Scholar]
  4. J. Enzmann, M. Ringel, Reducing road transport emissions in Europe: Investigating a demand side driven approach. Sustainability. 7594, 12(18) (2020). doi: 10.3390/su12187594. [Google Scholar]
  5. D. C. Carslaw, N. J. Farren, A. R. Vaughan, W. S. Drysdale, S. Young, J. D. Lee, The diminishing importance of nitrogen dioxide emissions from road vehicle exhaust. Atmos Environ X, 1 (2019). doi: 10.1016/j.aeaoa.2018.100002. [Google Scholar]
  6. B. Winkler-Ebner, M. Hirsch, L. Del Re, H. Klinger, W. Mistelberger, Comparison of virtual and physical NOx-sensors for heavy duty diesel engine application. SAE International J. Engines, 3 (2010). doi: 10.4271/2010-01-1296. [Google Scholar]
  7. S. Stadlbauer, D. Alberer, M. Hirsch, S. Formentin, C. Benatzky, L. Re, Evaluation of Virtual NOx Sensor Models for Off Road Heavy Duty Diesel Engines. SAE Int J Commer Veh, 5(1) (2012). doi: 10.4271/2012-01-0358. [Google Scholar]
  8. R. Fechert, B. B äker, S. Gereke, F. Atzler, Using machine learning methods to develop virtual NOx sensors for vehicle applications, In: Bargende, M., Reuss, HC., Wagner, A. (eds) 20. Internationales Stuttgarter Symposium. Proceedings. Springer Vieweg, Wiesbaden, 265–280 (2020). doi: 10.1007/978-3-658-30995-4_27. [Google Scholar]
  9. N. J. Kempema, C. Sharpe, X. Wu, M. Shahabi, D. Kubinski, Machine-Learning-Based Emission Models in Gasoline Powertrains Part 2: Virtual Carbon Monoxide, SAE Int J Engines, 16(6), 799–807 (2022). doi: 10.4271/03-16-06-0045. [Google Scholar]
  10. L. L. Tan, W. J. Ong, S. P. Chai, A. R. Mohamed, Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: Process and kinetic studies. Chemical Engineering Journal, 308 (2017). doi: 10.1016/j.cej.2016.09.050. [Google Scholar]
  11. A. khalilzadeh, A. Shariati, Fe-N-TiO2/CPO-Cu-27 nanocomposite for superior CO2 photoreduction performance under visible light irradiation, Solar Energy, 186, 166–174 (2019). doi: 10.1016/j.solener.2019.05.009. [Google Scholar]
  12. W. A. Thompson, E. Sanchez Fernandez, M. M. Maroto-Valer, Probability LangmuirHinshelwood based CO2 photoreduction kinetic models, Chemical Engineering Journal, 384 (2020). doi: 10.1016/j.cej.2019.123356. [CrossRef] [Google Scholar]
  13. R. Sips, On the structure of a catalyst surface, J Chem Phys, 16(5), 490–495 (1948), doi: 10.1063/1.1746922. [CrossRef] [Google Scholar]
  14. C. A. Coello Coello Coello, A Short Tutorial on Evolutionary Multiobjective Optimization, In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds) Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, (1993). doi.org/10.1007/3-540-44719-9_2 [Google Scholar]
  15. A. Acosta, Autos Consumo Gasolina Mexico, Accessed: Sep. 08, 2023. [Online]. Available: https://www.kaggle.com/datasets/checoalejandro/autos-consumo-gasolina-mexico?resource=download [Google Scholar]
  16. N. Morrison, D. C. Hoyle, Normalization, In: Berrar, D.P., Dubitzky, W., Granzow, M. (eds) A Practical Approach to Microarray Data Analysis, Springer, Boston, MA, 76–90 (2003). doi: 10.1007/0-306-47815-3_4. [CrossRef] [Google Scholar]
  17. J. M. Herrero, X. Blasco, M. Martínez, C. Ramos, J. Sanchis, Non-linear robust identification of a greenhouse model using multi-objective evolutionary algorithms, Biosyst Eng, 98(3) (2007). doi: 10.1016/j.biosystemseng.2007.06.004. [Google Scholar]
  18. X. Blasco, J. M. Herrero, J. Sanchis, M. Martínez, A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization, Inf Sci (N Y), 178(20), 3908–3924 (2008). doi: 10.1016/j.ins.2008.06.010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.