Open Access
Issue
E3S Web Conf.
Volume 533, 2024
XXVII International Scientific Conference on Advance in Civil Engineering “Construction the Formation of Living Environment” (FORM-2024)
Article Number 05001
Number of page(s) 9
Section Hydrotechnical Construction and Melioration
DOI https://doi.org/10.1051/e3sconf/202453305001
Published online 07 June 2024
  1. D. E. Goldberg, M. P. Samtani, Engineering optimization via genetic algorithm, Electronic computation ASCE, 471–482 (1986). [Google Scholar]
  2. Z. W. Geem, J. H. Kim, G. V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation 76(2), 60–68 (2001). [CrossRef] [Google Scholar]
  3. R. Storn, K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11(4), 341–359 (1997). [CrossRef] [Google Scholar]
  4. R. V. Rao, Rao algorithms: three metaphor-less simple algorithms for solving optimization problems, International Journal of Industrial Engineering Computations, 11, 107–130 (2020). [CrossRef] [Google Scholar]
  5. G. Walters, T. Lohbeck, Optimal layout of tree networks using genetic algorithms, Engineering Optimization, 22(1), 27–48 (1993). [CrossRef] [Google Scholar]
  6. G. Walters, D. Smith, Evolutionary design algorithm for optimal layout of tree networks, Engineering Optimization, 24(4), 261–281 (1995). [CrossRef] [Google Scholar]
  7. L. Liang, R. Thompson, D. Young, Optimising the design of sewer networks using genetic algorithms and Tabu search, Engineering, Construction, and Architectural Management, 11(2), 101–112 (2004). [CrossRef] [Google Scholar]
  8. M. Afshar, A. Afshar, M. Marino, A. Darbandi, Hydrograph-based storm sewer design optimization by genetic algorithm, Canadian Journal of Civil Engineering, 33(3), 319–325 (2006). [CrossRef] [Google Scholar]
  9. O. Karovic, L. Mays, Sewer system design using simulated annealing in Excel, Water Resources Management, 28(13), 4551–4565 (2014). [CrossRef] [Google Scholar]
  10. J. Yazdi, Water quality monitoring network design for urban drainage systems, an entropy method, Urban Water Journal, 15(3), 227–233 (2018). [CrossRef] [Google Scholar]
  11. D. Wolpert, W. Macready, No Free Lunch Theorems for Optimization, IEEE Transactions on Evolutionary Computation, 1, 67–72 (1997). [CrossRef] [Google Scholar]
  12. A. Pathirana, SWMM5 Python 5.2.1, https://pypi.org/project/SWMM5/#description, access: 27/02/2024. [Google Scholar]
  13. R.V. Rao, Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems, International Journal of Industrial Engineering Computations 11, 107–130 (2020). [CrossRef] [Google Scholar]
  14. H. Lee, W. Woo, Y.S. Park, A User-Friendly Software Package to Develop Storm Water Management Model (SWMM) Inputs and Suggest Low Impact Development Scenarios, Water 12, 2344 (2020). [CrossRef] [Google Scholar]
  15. Y.S. Park, http://npslab.kongju.ac.kr/, access: 27/02/2024. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.