Open Access
Issue
E3S Web Conf.
Volume 533, 2024
XXVII International Scientific Conference on Advance in Civil Engineering “Construction the Formation of Living Environment” (FORM-2024)
Article Number 05002
Number of page(s) 8
Section Hydrotechnical Construction and Melioration
DOI https://doi.org/10.1051/e3sconf/202453305002
Published online 07 June 2024
  1. Bhadran V., Shukla A., Karki H. Non-contact flaw detection and condition monitoring of subsurface metallic pipelines using magnetometric method. Materials Today: Proceedings. 2020; 28:860–864. DOI: 10.1016/j.maipr.2019.12.313. [CrossRef] [Google Scholar]
  2. Mogutin Yu.B., Guseva O.A., Veselova A.V., Vlasyev M.V. Organization of underwater maintenance work at offshore oil and gas fields // Shipbuilding. 2017. No. 4 (833). pp. 27–33. (rus) [Google Scholar]
  3. Gaidukevich S.V., Nikonenko A.D., Shalagin V.N. Maintenance of river and sea crossings of Gazprom pipelines. Status analysis and development proposals // The territory of NEFTEGAZ. 2013. No. 11. pp. 86–91. (rus) [Google Scholar]
  4. Surojo E., Syah Putri E.D., Budiana E.P. Recent Developments on Underwater Welding of Metallic Material // Procedia Structural Integrity. 2020. Vol. 27. Pp. 14–21. DOI: 10.1016/j.prostr.2020.07.003. [CrossRef] [Google Scholar]
  5. Atroschenko A.A., Zhukov G.D., Zhukov I.G. Diagnostics and protection of underwater crossings of main pipelines from erosion. The territory of NEFTEGAZ. 2013; 11:94–95. (rus) [Google Scholar]
  6. Ryltseva Yu.A. Modern methods and means of diagnostics and repair of underwater pipeline crossings // Vestnik MGSU. 2021. Vol. 16. Issue 9. pp. 1236–1263. DOI: 10.22227/1997-0935.2021.9.1236-1263. [CrossRef] [Google Scholar]
  7. Bai Yo., Bai Q. Subsea Engineering Handbook. Second Edition. United Kingdom: Gulf Professional Publishing, 2020. 940 p. DOI: 10.1016/B978-0-12-812622-6.00021-X [Google Scholar]
  8. Yang Q., Sun M., He M., Yang Q. Evolution features of riverbeds near underwater crossing line pipes: An experimental study // Natural Gas Industry B. 2020. Vol. 7. Pp. 246–253. DOI: 10.1016/j.ngib.2019.10.006 [CrossRef] [Google Scholar]
  9. Davis P., Brockhurst J. Subsea pipeline infrastructure monitoring: A framework for technology review and selection // Ocean Engineering. 2015. Vol. 104. Pp. 540–548. DOI: 10.1016/j.oceaneng.2015.04.025 [CrossRef] [Google Scholar]
  10. Bao Ch., Hao H., Lia Z. X. Integrated ARMA model method for damage detection of subsea pipeline system // Engineering Structures. 2013. Vol. 48. Pp. 176–192. DOI: 10.1016/j.oceaneng.2015.04.025 [CrossRef] [Google Scholar]
  11. Ivliev E.A. Detection, tracking and inspection of underwater pipelines and cables by electromagnetic methods. Underwater research and robotics. 2009. No. 2 (8). pp. 22–33. (rus) [Google Scholar]
  12. Grokhopolsky D.L., Vakulin N.A., Imanov O.A. A robotic platform for in-line diagnostics. Patent RU 194 854 U1. Published on 12.25.2019. Bulletin 36(rus) [Google Scholar]
  13. Zvirko O., Tsyrulnyk O., Nykyforchyn H. Non-destructive evaluation of operated pipeline steel state taking into account degradation stage // Procedia Structural Integrity 2020. Vol. 26. Pp. 219–224. DOI: 10.1016/j.prostr.2020.06.025 [CrossRef] [Google Scholar]
  14. Surojo E., Syah Putri E.D., Budiana E.P. Recent Developments on Underwater Welding of Metallic Material. Procedia Structural Integrity. 2020; 27:14–21. DOI: 10.1016/j.prostr.2020.07.003 [CrossRef] [Google Scholar]
  15. Mahmutoglu Y., Turk K. Positioning of leakages in underwater natural gas pipelines for time-varying multipath environment // Ocean Engineering. 2020. Vol. 207. P 107454. DOI: 10.1016/j.oceaneng.2020.107454 [CrossRef] [Google Scholar]
  16. Li X., Chen G., Chang Yu., Xu C. Risk-based operation safety analysis during maintenance activities of subsea pipelines // Process Safety and Environmental Protection. 2019. Vol. 122. Pp. 247–262. DOI: 10.1016/j.psep.2018.12.006 [CrossRef] [Google Scholar]
  17. Wang P., Chi C., Jiyuan L., Huang H. Improving performance of three-dimensional imaging sonars through deconvolution // Applied Acoustics. 2021. Vol. 175. P 107812. DOI: 10.1016/j.apacoust.2020.107812 [CrossRef] [Google Scholar]
  18. Merkulov V.I. Main directions and prospects for the development of underwater robotic systems used in the Arctic zone of the Russian Federation // Integrated Arctic research: collection of scientific papers of the International Symposium. St. Petersburg, 2017. pp. 16–28. (rus) [Google Scholar]
  19. Katysheva M.V. Electromagnetic inspection of underwater pipelines and cables by an underwater vehicle // The intellectual potential of the XXI century: the stages of knowledge. 2014. No. 25. pp. 125–129. (rus) [Google Scholar]
  20. Atroschenko A.A., Zhukov G.D., Zhukov I.G. Diagnostics and protection of underwater crossings of main pipelines from erosion// The territory of NEFTEGAZ. 2013. No. 11. pp. 94–95. (rus) [Google Scholar]
  21. Pozynich K.P., Eunap R.A., Pozynich E.K. Mechanization of repair and maintenance work on underwater crossings of pipelines secured with weights // Innovative development: the potential of science and modern education: monograph. Penza: Science and Education, 2019. pp. 165–188. (rus) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.