Open Access
Issue |
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
|
|
---|---|---|
Article Number | 13017 | |
Number of page(s) | 13 | |
Section | Other Renewable Energies | |
DOI | https://doi.org/10.1051/e3sconf/202454013017 | |
Published online | 21 June 2024 |
- Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. TRENDS in Microbiology, 14(12), 512–518. [CrossRef] [PubMed] [Google Scholar]
- Santero, E., Floriano, B., & Govantes, F. (2016). Harnessing the power of microbial metabolism. Current Opinion in Microbiology, 31, 63–69. [CrossRef] [PubMed] [Google Scholar]
- Butti, S. K., Velvizhi, G., Sulonen, M. L., Haavisto, J. M., Koroglu, E. O., Cetinkaya, A. Y.,... & Mohan, S. V. (2016). Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renewable and Sustainable Energy Reviews, 53, 462–476. [CrossRef] [Google Scholar]
- Min, B., & Logan, B. E. (2004). Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental science & technology, 38(21), 5809–5814. [CrossRef] [PubMed] [Google Scholar]
- Zhang, F., Saito, T., Cheng, S., Hickner, M. A., & Logan, B. E. (2010). Microbial fuel cell cathodes with poly (dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental science & technology, 44(4), 1490–1495. [CrossRef] [PubMed] [Google Scholar]
- Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., & Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental science & technology, 40(10), 3388–3394. [CrossRef] [PubMed] [Google Scholar]
- Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9(21), 2619–2629. [CrossRef] [PubMed] [Google Scholar]
- Lovley, D. R. (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches. Current opinion in biotechnology, 17(3), 327–332. [CrossRef] [PubMed] [Google Scholar]
- Min, B., Kim, J., Oh, S., Regan, J. M., & Logan, B. E. (2005). Electricity generation from swine wastewater using microbial fuel cells. Water research, 39(20), 4961–4968. [CrossRef] [PubMed] [Google Scholar]
- Tulp, M., & Bohlin, L. (2005). Rediscovery of known natural compounds: nuisance or goldmine?. Trends in pharmacological sciences, 26(4), 175–177. [CrossRef] [PubMed] [Google Scholar]
- Karr, J. R., Takahashi, K., & Funahashi, A. (2015). The principles of whole-cell modeling. Current opinion in microbiology, 27, 18–24. [CrossRef] [PubMed] [Google Scholar]
- Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B.,... & Covert, M.W. (2012). A whole-cell computational model predicts phenotype from genotype. Cell, 150(2), 389–401. [CrossRef] [PubMed] [Google Scholar]
- Yadav, V. G., De Mey, M., Lim, C. G., Ajikumar, P. K., & Stephanopoulos, G. (2012). The future of metabolic engineering and synthetic biology: towards a systematic practice. Metabolic engineering, 14(3), 233–241. [CrossRef] [PubMed] [Google Scholar]
- Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A.,... & Venter, J. C. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. science, 329(5987), 52–56. [CrossRef] [PubMed] [Google Scholar]
- Rosenbaum, M., Schröder, U., & Scholz, F. (2005). In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobactersphaeroides. Environmental science & technology, 39(16), 6328–6333. [CrossRef] [PubMed] [Google Scholar]
- Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology letters, 25, 1531–1535. [CrossRef] [PubMed] [Google Scholar]
- Rabaey, K., Clauwaert, P., Aelterman, P., & Verstraete, W. (2005). Tubular microbial fuel cells for efficient electricity generation. Environmental science & technology, 39(20), 8077–8082. [CrossRef] [PubMed] [Google Scholar]
- He, Z., Minteer, S. D., & Angenent, L. T. (2005). Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental science & technology, 39(14), 5262–5267. [CrossRef] [PubMed] [Google Scholar]
- Rabaey, K., Boon, N., Höfte, M., & Verstraete, W. (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environmental science & technology, 39(9), 3401–3408. [CrossRef] [PubMed] [Google Scholar]
- Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9(21), 2619–2629. [CrossRef] [PubMed] [Google Scholar]
- Mohan, S. V., Velvizhi, G., Modestra, J. A., & Srikanth, S. (2014). Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable and Sustainable Energy Reviews, 40, 779–797. [CrossRef] [Google Scholar]
- Modestra, J. A., Navaneeth, B., & Mohan, S. V. (2015). Bio-electrocatalytic reduction of CO2: Enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis. Journal of CO2 Utilization, 10, 78–87. [CrossRef] [Google Scholar]
- More, T. T., & Ghangrekar, M. M. (2010). Improving performance of microbial fuel cell with ultrasonication pre-treatment of mixed anaerobic inoculum sludge. Bioresource Technology, 101(2), 562–567. [CrossRef] [PubMed] [Google Scholar]
- Leano, E. P., Anceno, A. J., & Babel, S. (2012). Ultrasonic pretreatment of palm oil mill effluent: Impact on biohydrogen production, bioelectricity generation, and underlying microbial communities. International journal of hydrogen energy, 37(17), 12241–12249. [CrossRef] [Google Scholar]
- Oh, S. E., Yoon, J. Y., Gurung, A., & Kim, D. J. (2014). Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells. Bioresource technology, 165, 21–26. [CrossRef] [PubMed] [Google Scholar]
- Yusoff, M. Z. M., Hu, A., Feng, C., Maeda, T., Shirai, Y., Hassan, M. A., & Yu, C. P. (2013). Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. Bioresource technology, 145, 90–96. [CrossRef] [PubMed] [Google Scholar]
- Chen, Y., Jiang, J., & Zhao, Q. (2014). Freezing/thawing effect on sewage sludge degradation and electricity generation in microbial fuel cell. Water science and technology, 70(3), 444–449. [CrossRef] [PubMed] [Google Scholar]
- Fan, Y., Hu, H., & Liu, H. (2007). Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources, 171(2), 348–354. [CrossRef] [Google Scholar]
- Liu, H., Cheng, S., & Logan, B. E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental science & technology, 39(14), 5488–5493. [CrossRef] [PubMed] [Google Scholar]
- Kim, B. H., & Gadd, G. M. (2019). Prokaryotic metabolism and physiology. Cambridge University Press. [CrossRef] [Google Scholar]
- Santoro, C., Agrios, A., Pasaogullari, U., & Li, B. (2011). Effects of gas diffusion layer (GDL) and micro porous layer (MPL) on cathode performance in microbial fuel cells (MFCs). International journal of hydrogen energy, 36(20), 13096–13104. [CrossRef] [Google Scholar]
- Huang, L., Regan, J. M., & Quan, X. (2011). Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource technology, 102(1), 316–323. [CrossRef] [PubMed] [Google Scholar]
- Zhang, F., Pant, D., & Logan, B. E. (2011). Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors and Bioelectronics, 30(1), 49–55. [CrossRef] [Google Scholar]
- Mohan, S. V., Velvizhi, G., Krishna, K. V., & Babu, M. L. (2014). Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresource Technology, 165, 355–364. [CrossRef] [PubMed] [Google Scholar]
- Raghavulu, S. V., Babu, P. S., Goud, R. K., Subhash, G. V., Srikanth, S., & Mohan, S. V. (2012). Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis. RSC advances, 2(2), 677–688. [CrossRef] [Google Scholar]
- Yong, Y. C., Yu, Y. Y., Li, C. M., Zhong, J. J., & Song, H. (2011). Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells. Biosensors and Bioelectronics, 30(1), 87–92. [CrossRef] [Google Scholar]
- Jiang, J., Zhao, Q., Wei, L., Wang, K., & Lee, D. J. (2011). Degradation and characteristic changes of organic matter in sewage sludge using microbial fuel cell with ultrasound pretreatment. Bioresource technology, 102(1), 272–277. [CrossRef] [PubMed] [Google Scholar]
- Dhaya R., Ujwal U.J., Sharma T., Singh P., Kanthavel R., Selvan S. & Krah D. (2022), “Energy-Efficient Resource Allocation and Migration in Private Cloud Data Centre”, Wireless Communications and Mobile Computing. [Google Scholar]
- Scholta, J., Berg, N., Wilde, P., Jörissen, L., & Garche, J. (2004). Development and performance of a 10 kW PEMFC stack. Journal of Power Sources, 127(1–2), 206–212. [CrossRef] [Google Scholar]
- M Budzianowski, W., & Milewski, J. (2011). Solid-oxide fuel cells in power generation applications: a review. Recent patents on engineering, 5(3), 165–189. [CrossRef] [Google Scholar]
- ISHII, S. I., Hotta, Y., & Watanabe, K. (2008). Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Bioscience, biotechnology, and biochemistry, 72(2), 286–294. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.