Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 13018
Number of page(s) 15
Section Other Renewable Energies
DOI https://doi.org/10.1051/e3sconf/202454013018
Published online 21 June 2024
  1. SS Raju, P Shinoj, and PK Joshi. Sustainable development of biofuels: Prospects and challenges. Economic and Political Weekly, pages 65–72, 2009. [Google Scholar]
  2. Ulf Schuchardt, Ricardo Sercheli, and Rog´erio Matheus Vargas. Transesterification of vegetable oils: a review. Journal of the Brazilian Chemical Society, 9:199–210, 1998. [Google Scholar]
  3. Yii-Der You, Je-Lueng Shie, Ching-Yuan Chang, Sheng-Hsuan Huang, Cheng-Yu Pai, Yue-Hwa Yu, and Chungfang Ho Chang. Economic cost analysis of biodiesel production: case in soybean oil. Energy & Fuels, 22(1):182–189, 2008. [CrossRef] [Google Scholar]
  4. Piyanuch Nakpong and Sasiwimol Wootthikanokkhan. Biodiesel production from mixtures of vegetable oil and used cooking oil. Asian Journal of Energy and Environment, 10:221–229, 2009. [Google Scholar]
  5. Shengnan Li, Xue Li, and Shih-Hsin Ho. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: an updated review. Chemosphere, page 132863, 2021. [Google Scholar]
  6. Md Imran Kais, Farsad Imtiaz Chowdhury, and Kazy Fayeen Shahriar. Biodiesel from microalgae as a solution of third world energy crisis. In World Renewable Energy Congress- Sweden; 8–13 May; 2011; Link¨oping; Sweden, number 057, pages 192–199. Link¨oping University Electronic Press, 2011. [Google Scholar]
  7. Hanifa Taher, Sulaiman Al-Zuhair, Ali H Al-Marzouqi, Yousef Haik, and Mohammed M Farid. A review of enzymatic transesterification of microalgal oilbased biodiesel using supercritical technology. Enzyme research, 2011, 2011. [Google Scholar]
  8. B-S Chiou, HM El-Mashad, RJ Avena-Bustillos, RO Dunn, PJ Bechtel, TH McHugh, SH Imam, GM Glenn, WJ Orts, and R Zhang. Biodiesel from waste salmon oil. Transactions of the ASABE, 51(3):797–802, 2008. [CrossRef] [Google Scholar]
  9. Alemayehu Teressa Negawo, Abel Teshome, Alok Kumar, Jean Hanson, and Chris S Jones. Opportunities for napier grass (pennisetum purpureum) improvement using molecular genetics. Agronomy, 7(2):28, 2017. [Google Scholar]
  10. Isah Yakub Mohammed, Feroz Kabir Kazi, Suzana Yusup, Peter Adeniyi Alaba, Yahaya Muhammad Sani, and Yousif Abdalla Abakr. Catalytic intermediate pyrolysis of napier grass in a fixed bed reactor with zsm-5, hzsm-5 and zincexchanged zeolite-a as the catalyst. Energies, 9(4):246, 2016. [Google Scholar]
  11. Isah Y Mohammed, Yousif A Abakr, Feroz K Kazi, Suzana Yusup, Ibraheem Alshareef, and Soh A Chin. Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. Energies, 8(5):3403–3417, 2015. [CrossRef] [Google Scholar]
  12. WO Delimanto, et al. Production of bioethanol from napier grass: Comparison in pretreatment and fermentation methods. In IOP Conference Series: Earth and Environmental Science, volume 520, page 012005. IOP Publishing, 2020. [CrossRef] [Google Scholar]
  13. Katja Vasi´c, Zˇeljko Knez, and Maja Leitgeb. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules, 26(3):753, 2021. [CrossRef] [PubMed] [Google Scholar]
  14. George Prasoulas, Aggelos Gentikis, Aikaterini Konti, Styliani Kalantzi, Dimitris Kekos, and Diomi Mamma. Bioethanol production from food waste applying the multienzyme system produced on-site by fusarium oxysporum f3 and mixed microbial cultures. Fermentation, 6(2):39, 2020. [Google Scholar]
  15. Mallika Boonmee Kongkeitkajorn, Rotsarin Yaemdeeka, Irada Chaiyota, Korakoch Hamsupo, Atcha Oraintara, and Alissara Reungsang. Bioethanol from napier grass employing different fermentation strategies to evaluate a suitable operation for batch bioethanol production. Energy Conversion and Management: X, 12:100143, 2021. [CrossRef] [Google Scholar]
  16. Kim Olofsson, Magnus Bertilsson, and Gunnar Lid´en. A short review on ssf–an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for biofuels, 1(1):1–14, 2008. [CrossRef] [PubMed] [Google Scholar]
  17. Mallika Boonmee Kongkeitkajorn, Rotsarin Yaemdeeka, Irada Chaiyota, Korakoch Hamsupo, Atcha Oraintara, and Alissara Reungsang. Bioethanol from napier grass employing different fermentation strategies to evaluate a suitable operation for batch bioethanol production. Energy Conversion and Management: X, 12:100143, 2021. [CrossRef] [Google Scholar]
  18. Mallika Boonmee Kongkeitkajorn, Chanpim Sae-Kuay, and Alissara Reungsang. Evaluation of napier grass for bioethanol production through a fermentation process. Processes, 8(5):567, 2020. [CrossRef] [Google Scholar]
  19. Masahide Yasuda, Yasuyuki Ishii, and Kazuyoshi Ohta. Napier grass (pennisetum purpureum schumach) as raw material for bioethanol production: Pretreatment, saccharification, and fermentation. Biotechnology and bioprocess engineering, 19(6):943–950, 2014. [CrossRef] [Google Scholar]
  20. Barat Ghobadian, Hadi Rahimi, AM Nikbakht, Gholamhassan Najafi, and TF Yusaf. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renewable energy, 34(4):976–982, 2009. [CrossRef] [Google Scholar]
  21. AS Silitonga, AE Atabani, TMI Mahlia, HH Masjuki, Irfan Anjum Badruddin, and S Mekhilef. A review on prospect of jatropha curcas for biodiesel in indonesia. Renewable and Sustainable Energy Reviews, 15(8):3733–3756, 2011. [CrossRef] [Google Scholar]
  22. MA Mujtaba, HH Masjuki, MA Kalam, Fahad Noor, Muhammad Farooq, Hwai Chyuan Ong, M Gul, Manzoore Elahi M Soudagar, Shahid Bashir, IM Rizwanul Fattah, et al. Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology. Energies, 13(13):3375, 2020. [CrossRef] [Google Scholar]
  23. Ning Yang, Xiaowen Deng, Bin Liu, Liwei Li, Yuan Li, Peng Li, Miao Tang, and Lin Wu. Combustion performance and emission characteristics of marine engine burning with different biodiesel. Energies, 15(14):5177, 2022. [CrossRef] [Google Scholar]
  24. Fangrui Ma and Milford A Hanna. Biodiesel production: a review. Bioresource technology, 70(1):1–15, 1999. [CrossRef] [Google Scholar]
  25. MH Jayed, Haji Hassan Masjuki, Rahman Saidur, MA Kalam, and Mohammed I Jahirul. Environmental aspects and challenges of oilseed produced biodiesel in southeast asia. Renewable and Sustainable Energy Reviews, 13(9):2452–2462, 2009. [CrossRef] [Google Scholar]
  26. Abdelaziz E Atabani, Arridina S Silitonga, Irfan Anjum Badruddin, TMI Mahlia, HHm Masjuki, and S Mekhilef. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and sustainable energy reviews, 16(4):2070– 2093, 2012. [Google Scholar]
  27. IM Atadashi, Mohamed Kheireddine Aroua, AR Abdul Aziz, and NMN Sulaiman. Production of biodiesel using high free fatty acid feedstocks. Renewable and sustainable energy reviews, 16(5):3275–3285, 2012. [CrossRef] [Google Scholar]
  28. M Shahabuddin, MA Kalam, HH Masjuki, MMK Bhuiya, and M Mofijur. An experimental investigation into biodiesel stability by means of oxidation and property determination. Energy, 44(1):616–622, 2012. [CrossRef] [Google Scholar]
  29. M Shahabuddin, HH Masjuki, M Ali Kalam, M Mofijur, M Ali Hazrat, and AM Liaquat. Effect of additive on performance of ci engine fuelled with bio diesel. Energy Procedia, 14:1624–1629, 2012. [CrossRef] [Google Scholar]
  30. Afshin Ghorbani, Bahamin Bazooyar, Ahmad Shariati, Seyyed Mohammad Jokar, Hadi Ajami, and Ali Naderi. A comparative study of combustion performance and emission of biodiesel blends and diesel in an experimental boiler. Applied Energy, 88(12):4725–4732, 2011. [CrossRef] [Google Scholar]
  31. AM Liaquat, HH Masjuki, MA Kalam, M Varman, MA Hazrat, M Shahabuddin, and M Mofijur. Application of blend fuels in a diesel engine. Energy Procedia, 14:1124–1133, 2012. [CrossRef] [Google Scholar]
  32. Obed M Ali, Rizalman Mamat, Gholamhassan Najafi, Talal Yusaf, and Seyed Mohammad Safieddin Ardebili. Optimization of biodiesel-diesel blended fuel properties and engine performance with ether additive using statistical analysis and response surface methods. Energies, 8(12):14136–14150, 2015. [CrossRef] [Google Scholar]
  33. M Mofijur, HH Masjuki, MA Kalam, MA Hazrat, AM Liaquat, M Shahabuddin, and M Varman. Prospects of biodiesel from jatropha in malaysia. Renewable and sustainable energy reviews, 16(7):5007–5020, 2012. [CrossRef] [Google Scholar]
  34. MH Jayed, HH Masjuki, MA Kalam, TMI Mahlia, M Husnawan, and AM Liaquat. Prospects of dedicated biodiesel engine vehicles in malaysia and indonesia. Renewable and Sustainable Energy Reviews, 15(1):220–235, 2011. [CrossRef] [Google Scholar]
  35. B. T. Ramesh, Javed Sayyad, Arunkumar Bongale, and Anupkumar Bongale. Extraction and performance analysis of hydrocarbons from waste plastic using the pyrolysis process. Energies, 15(24), 2022 [Google Scholar]
  36. William F Anderson, Bruce S Dien, Sarah K Brandon, and Joy Doran Peterson. Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. In Biotechnology for Fuels and Chemicals, pages 13–21. Springer, 2007. [CrossRef] [Google Scholar]
  37. Nathan Mosier, Charles Wyman, Bruce Dale, Richard Elander, YY Lee, Mark Holtzapple, and Michael Ladisch. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology, 96(6):673–686, 2005. [CrossRef] [PubMed] [Google Scholar]
  38. Parveen Kumar, Diane M Barrett, Michael J Delwiche, and Pieter Stroeve. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & engineering chemistry research, 48(8):3713–3729, 2009. [CrossRef] [Google Scholar]
  39. Gezahagn Kebede, Fekede Feyissa, Getnet Assefa, Mengistu Alemayehu, Alemayehu Mengistu, Aemiro Kehaliew, Kassahun Melese, Solomon Mengistu, Estifanos Tadesse, Shewangizaw Wolde, et al. Agronomic performance, dry matter yield stability and herbage quality of napier grass (pennisetum purpureum (l.) schumach) accessions in different agro- ecological zones of ethiopia. Journal of Agricultural and Crop Research, 5(4):49–65, 2017. [Google Scholar]
  40. Jonathan R Mielenz. Small-scale approaches for evaluating biomass bioconversion for fuels and chemicals. In Bioenergy, pages 385–406. Elsevier, 2015. [CrossRef] [Google Scholar]
  41. Runcang Sun. Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose. Elsevier, 2010. [Google Scholar]
  42. T Kent Kirk and Roberta L Farrell. Enzymatic “combustion”: The microbial degradation of lignin1, 2. Ann. Rev. Microbiol, 41:465–505, 1987. [CrossRef] [PubMed] [Google Scholar]
  43. Bruce S Dien, William F Anderson, Ming-Hsun Cheng, Joseph E Knoll, Marshall Lamb, Patricia J O’Bryan, Vijay Singh, Ronald B Sorensen, Timothy C Strickland, and Patricia J Slininger. Field productivities of napier grass for production of sugars and ethanol. ACS Sustainable Chemistry & Engineering, 8(4):2052–2060, 2020. [CrossRef] [Google Scholar]
  44. Rafael Cunha de Assis Castro and Inˆes Concei¸c˜ao Roberto. Effect of nutrient supplementation on ethanol production in different strategies of saccharification and fermentation from acid pretreated rice straw. biomass and bioenergy, 78:156–163, 2015. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.