Open Access
Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 7 | |
Section | Experimental Investigations From Very Small Strains to Beyond Failure - Advances in Laboratory Testing Techniques (Equipment and Procedures) | |
DOI | https://doi.org/10.1051/e3sconf/202454401015 | |
Published online | 02 July 2024 |
- Al-Wakel, S.F.A; Fattah, M.Y; Karim, H.H; Chan, A.H.C. 2014. Experimental and Numerical Modeling of Machine Foundations on a Saturated Soil. Numerical Methods in Geotechnical Engineering – Proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE 2014. The Netherlands. [Google Scholar]
- Anastasopoulos, I., Kourkoulis, R., Gelagoti, F., & Papadopoulos Efthymios. 2012. Rocking response of SDOF system on shallow improved sand: An experimental study. Soil Dynamics and Earthquake Engineering. Vol. 40, pp. 15 – 33. 41. [Google Scholar]
- Anastasopoulos, I., Gelagoti, F.; Kourkoulis, R.; Gazetas, G.; MASCE. 2011. Simplified Constitutive Model for Simulation of Cyclic Response of Shallow Foundations: Validation against Laboratory Tests. J. Geotech. Geoenviron. Eng. ASCE, 37(12), pp. 1154–1168. [Google Scholar]
- Ashmawy, A.K., Sukumaran, B., Hoang, V.V. 2003. Evaluating the Influence of Particle Shape on Liquefaction Behavior Using Discrete Elements Modeling. [Google Scholar]
- Azeiteiro, R.J.N., Cohelo, P.A.L.F., Taborda, D.M.G. & Grazina, J.C.D. 2016. Energy-based evaluation of liquefaction potential under non-uniform cyclic loading. Soil Dynamics and Earthquake Engineering. Vol 92, pp. 650 – 665. [Google Scholar]
- Baltzopoulos, G., Baraschino, R., Iervolino, I., & Vamvatsikos, D. 2018. Dynamic analysis of single-degree-of-freedom systems (DYANAS): A graphical user interface for OpenSees. Engineering Structures, 395 - 408. [Google Scholar]
- Bevere L, Ewald M, Wunderlich S. 2019. A decade of major earthquakes: lessons for business. Zurich, Switzerland: Swiss Re Institute. [Google Scholar]
- Bray, J.D. & Sancio, R.B. 2006. Assessment of the Liquefaction Susceptibility of Fine-Grained Soils. Journal of Geotechnical and Geoenvironmental Engineering. Vol 132, No 9, pp. 1165 – 1177. [Google Scholar]
- Budhu, M. 2015. Soil Mechanics Fundamentals. John Wiley & Sons. The United Kingdom. [Google Scholar]
- Cho, G-Ch., Dodds. J., & Santamarina, J.C. 2006. Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands. Journal of Geotechnical and Geoenvironmental Engineering. Vol 132, No 5, pp. 591 – 602. [Google Scholar]
- Elnashai, A.S., Di Sarno, L. 2008. Fundamentals of Earthquake Engineering. John Wiley & Sons. West Sussex. United Kingdom. [Google Scholar]
- Fisher R L. 1974. Pacific-Type Continental Margins. Em C. A. Burk, & C. L. Drake, The Geology of Continental Margins. Berlin, Heidelberg: Springer. [CrossRef] [Google Scholar]
- Garnier, J., Gaudin, C., Springman, S. M., Culligan, P. J., Goodings, D., Koning, D.,. . . Thorel, L. 2007. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics, 1–23. [Google Scholar]
- Gavras, A. G.; Kutter, B. L.; Hakhamaneshi, M.; Gajan, S.; Tsatsis, A.; Sharma, K.; Kohno, T.; Deng, L.; Anastosopoulos, I.; Gazetas, G. 2020. Database of rocking shallow foundation performance: Dynamic shaking. Earthq. Spectra, pp. 1–23. [Google Scholar]
- Gazetas, G. 2015. 4th Ishihara lecture: Soil-foundationstructure systems beyond conventional seismic failure thresholds. Soil Dynamics and Earthquake Engineering, 23 - 39. 13. [Google Scholar]
- Iai, S. 1989. Similitude for shaking table tests on soil-structurefluid model in 1g gravitational field. Soil and Foundations. Vol. 29, No. 1, 105–118. [CrossRef] [Google Scholar]
- Ishihara, K. 1993. Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351–415. [CrossRef] [Google Scholar]
- Jafarian, Y., Esmaeilpour, P., Shojaeemehr, S., Taghavizade, H., Rouhi, S., McCartney, J.S. 2021. Impacts of Fixed-End and Flexible Boundary Conditions on Seismic Response of Shallow Foundations on Saturated Sand in 1-g Shaking Table Tests. Geotechnical Testing Journal. Vol. 44, No. 3 pp. 637 – 664. [Google Scholar]
- Jefferies, M., & Been, K. 2006. Soil liquefaction A critical state approach. London and New York: Taylor & Francis. [CrossRef] [Google Scholar]
- Jimenez, O., Lizcano, A. 2015. Liquefaction flow behavior of Guamo sand. Fundamentals to Applications in Geotechnics. [Google Scholar]
- Kramer, S. L. 1996. Geotechnical Earthquake Engineering. Prentice-Hall, Inc. Upper Sanddle River, New Jersey. [Google Scholar]
- Martakis, P., Taeseri, Damoun., Chatzi, Eleni., Laue, Jan. 2017. A centrifuge-based experimental verification of Soil- Structure Interaction effects. Soil Dynamics and Earthquake Engineering, 103, 1 - 14. [Google Scholar]
- Molina-Gomez, F., Viana, A. 2021. Key geomechanical properties of the historically liquefiable TP-Lisbon sand. Soil and Foundations. [Google Scholar]
- Murcia, H. F., & Hurtado, B. O. 2003. Caracterizacion del deposito de flujo de escombros de Chicoral, volcan Cerro Machin, Colombia.: Manizales Universidad de Caldas. [Google Scholar]
- Nong, Z., Park, S.-S., Jeong, S.-W., & Lee, D.-E. 2020. Effect of Cyclic Loading Frequency on Liquefaction Prediction of Sand. Applied Sciences MDPI, 1–15. [Google Scholar]
- Nunez, A. 1996. Mapa Geologico del Departamento del Tolima. Geologia, Recursos Geologicos y Amenazas Geologicas. Escala 1:250.000. Memoria Explicativa. Ibague. [Google Scholar]
- OpenCV Lessons., (2010). Object Detection Using Color Separation. https://www.opencv-srf.com/2010/09/object-detection-usingcolor-seperation.html. [Google Scholar]
- Patino, J. C. 2006. Parametros Hipoplasticos de la Arena del Guamo-Colombia. Bogota: Universidad de los Andes. [Google Scholar]
- Pestana J.M. 2004. Laboratory Study of Liquefaction Triggering Criteria. 13th World Conference on Earthquake Engineering. Paper No. 2580 Vancouver, B.C., Canada. [Google Scholar]
- Powell V., (2022). Image Kernels Explained Visually. Setosa. https://setosa.io/ev/imagekernels/#:~:text=An%20image%20kernel%20is%20a,important%20portions%20of%20an%20image [Google Scholar]
- Ravi K. S., (2018). Convex Hull using OpenCV in Python and C++. https://learnopencv.com/author/krshrimali/ [Google Scholar]
- Rees, S. (2020, 09 29). GDS Instruments. Retrieved from GDS Instruments: https://www.gdsinstruments.com/ [Google Scholar]
- Ruelke. 2010. Is water more than just H2O? AASHTO re: source (Journal AMRL). http://aashtoresource.org/university/newsletters/newsletters/2016/08/02/is-water-more-than-just-h2o [Google Scholar]
- Ruiz, J. C., & Bermudez, J. F. 2015. Estudio experimental de la linea de inestabilidad bajo condiciones anisotropicas de carga no drenada monotonica. Bogota, Colombia: Pontificia Universidad Javeriana. [Google Scholar]
- Srbulov, M. 2008. Geotechnical Earthquake Engineering Simplified Analyses with Case Studies and Examples. UK: Springer Science+Business Media BV. [Google Scholar]
- Stokoe, K. H. 2003. Attachment A-7, Results of Resonant Column/Cyclic Torsional Shear Testing. Austin, Texas: the United States Nuclear Regulatory Commission Site Safety Analysis Report for Exelon Generation Company, L.L.C. Early Site Permit. [Google Scholar]
- Taboada A, Rivera L A, Fuenzalida A, Cisternas A, Philip H, Bijwaard H, Rivera C. 2000. Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics 19/5, 787 - 813. [Google Scholar]
- Taeseri, D., Laue, J., Martakis, P., Chatzi, E., & Anastasopoulos, I. 2018. Static and dynamic rocking stiffness of shallow footings on sand: centrifuge modeling. International Journal of Physical Modelling in Geotechnics, 18(6), 315 - 339. [CrossRef] [Google Scholar]
- Taylor, R. N. 1995. Geotechnical centrifuge technology. New York: Taylor & Francis. [Google Scholar]
- Tique, D.O. 2016. Estudio experimental de la inestabilidad difusa para la arena del Guamo Tolima. Bogota, Colombia: Pontificia Universidad Javeriana. [Google Scholar]
- Verdugo, R. 2015. Liquefaction Observed During the 2010 Chile Earthquake. Geotechnical, Geological and Earthquake 37. Springer International.Switzeland. [Google Scholar]
- Wu, J.; Kammerer, A.M.; Riemer, M.F.; Seed, RB; Pestana J.M. 2004. Laboratory Study of Liquefaction Triggering Criteria in 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada. [Google Scholar]
- Youd, T.L. & Perkins, D.M. 1987. Mapping of Liquefaction Severity Index. Journal of Geotechnical Engineering. ASCE, Vol. 113, No 11, pp. 1374 – 1392. [Google Scholar]
- Zhao, H.-h.; Liu, C.; Tang, X.-w.; Wei, H.-w.; Zhu, F. 2020. Study of Visualization measurement system of spatial deformation based on transparent soil and threedimensional reconstruction technology. Rock and Soil Mechanics, 41(9) pp. 3170–3180. 6. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.