Open Access
Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 7 | |
Section | Experimental Investigations From Very Small Strains to Beyond Failure - Data Interpretation and Geotechnical Imaging | |
DOI | https://doi.org/10.1051/e3sconf/202454404003 | |
Published online | 02 July 2024 |
- Al-Raoush, R., A. Papadopoulos. 2010. “Representative elementary volume analysis of porous media using X-ray computed tomography” Powder Technology 200, no. 1-2: 69–77. https://doi.org/10.1016/j.powtec.2010.02.011 [CrossRef] [Google Scholar]
- Amirrahmat, S., A. M. Druckrey, K. A. Alshibli, R. I. Al-Raoush. 2019. “Micro Shear Bands: Precursor for Strain Localization in Sheared Granular Materials” J Geotech Geoenviron Eng 145, no. 2: 04018104. http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001989 [CrossRef] [Google Scholar]
- Bacic, B., I. Herle. 2020. “A simple method for the determination of sensitivity to density changes in sand liquefaction” Open Geomechanics 2, 1–8. https://doi.org/10.5802/ogeo.6 [CrossRef] [Google Scholar]
- Desrues, J., E. Ando, F. A. Mevoli, L. Debove, G. Viggiani. 2018. “How does strain localise in standard triaxial tests on sand: Revisiting the mechanism 20 years on” Mechanics Research Communications 92, 142–146. https://doi.org/10.1016/j.mechrescom.2018.08.007 [CrossRef] [Google Scholar]
- Desrues, J., R. Chambon, M. Mokni, F. Mazerolle. 1996. “Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography” Geotechnique 46, no. 3: 529–546. https://doi.org/10.1680/geot.1996.46.3.529 [CrossRef] [Google Scholar]
- Fonseca, J., C. O’Sullivan, M. R. Coop, P. Lee. 2013. “Quantifying the evolution of soil fabric during shearing using directional parameters” Geotechnique 63, no. 6: 487–499. https://doi.org/10.1680/geot.12.P.003 [CrossRef] [Google Scholar]
- Ganju, E., M. Kılıc, M. Prezzi, R. Salgado, N. Parab, W. Chen. 2021. “Effect of particle characteristics on the evolution of particle size, particle morphology, and fabric of sands loaded under uniaxial compression” Acta Geotech 16, no. 11: 3489–3516. https://doi.org/10.1007/s11440-021-01309-3 [CrossRef] [Google Scholar]
- Gitman, I., H. Askes, L. Sluys. 2007. “Representative volume: Existence and size determination” Engineering fracture mechanics 74, no. 16: 2518–2534. https://doi.org/10.1016/j.engfracmech.2006.12.021 [CrossRef] [Google Scholar]
- Imseeh, W. H., K. A. Alshibli, R. I. Al-Raoush. 2020. “Discrepancy in the Critical State Void Ratio of Poorly Graded Sand due to Shear Strain Localization” J Geotech Geoenviron Eng 146, no. 8: 04020066. https://doi.org/10.1061/(asce)gt.1943-5606.0002280 [CrossRef] [Google Scholar]
- Imseeh, W. H., A. M. Druckrey, K. A. Alshibli. 2018. “3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron microcomputed tomography” Granular Matter 20, no. 2: 1–28. https://doi.org/10.1007/s10035-018-0798-x [CrossRef] [Google Scholar]
- Jiang, M., A. Zhang, T. Li. 2019. “Distinct element analysis of the microstructure evolution in granular soils under cyclic loading” Granular Matter 21, no. 2: 1–16. https://doi.org/10.1007/s10035-019-0892-8 [CrossRef] [Google Scholar]
- Razavi, M. R., B. Muhunthan, O. Al Hattamleh. 2006. “Representative Elementary Volume Analysis of Sands [Google Scholar]
- Using X-Ray Computed Tomography” Geotech Test J 30, no. 3: 212–219. https://doi.org/10.1520/GTJ100164 [Google Scholar]
- Schmidt, S., M. Wiebicke, I. Herle. 2022. “On the determination and evolution of fabric in representative elementary volumes for a sand specimen in triaxial compression” Granular Matter 24, no. 4: 1–9. https://doi.org/10.1007/s10035-022-01262-2 [CrossRef] [Google Scholar]
- Stamati, O., E. Ando, E. Roubin, R. Cailletaud, M. Wiebicke, G. Pinzon, C. Couture, R. C. Hurley, R. Caulk, D. Caillerie, et al. 2020. “spam: Software for practical analysis of materials” JOSS 5, no. 51: 2286. https://dx.doi.org/10.21105/joss.02286 [CrossRef] [Google Scholar]
- Sufian, A., A. Russell, A. Whittle. 2017. “Anisotropy of contact networks in granular media and its influence on mobilized internal friction” Geotechnique 67, no. 12: 1067–1080. https://doi.org/10.1680/jgeot.16.P.170 [Google Scholar]
- Wiącek, J., M. Molenda. 2016. “Representative elementary volume analysis of polydisperse granular packings using discrete element method” Particuology 27, 88–94. https://doi.org/10.1016/j.partic.2015.08.004 [CrossRef] [Google Scholar]
- Wiebicke, M., E. Ando, I. Herle, G. Viggiani. 2017. “On the metrology of interparticle contacts in sand from x-ray tomography images” Meas Sci Technol 28, no. 12: 124007. https://doi.org/10.1088/1361-6501/aa8dbf [CrossRef] [Google Scholar]
- Wiebicke, M., E. Ando, V. Šmilauer, I. Herle, G. Viggiani. 2019. “A benchmark strategy for the experimental measurement of contact fabric” Granular Matter 21, no. 3: 1–13. https://doi.org/10.1007/s10035-019-0902-x [CrossRef] [Google Scholar]
- Wiebicke, M., E. Ando, G. Viggiani, I. Herle. 2020. “Measuring the evolution of contact fabric in shear bands with x-ray tomography” Acta Geotech 15, no. 1: 79–93. https://doi.org/10.1007/s11440-019-00869-9 [CrossRef] [Google Scholar]
- Wood, D. M. 2012. “Heterogeneity and soil element testing” Geotechnique Letters 2, no. 3: 101–106. https://doi.org/10.1680/geolett.12.00019 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.