Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 05001
Number of page(s) 7
Section Experimental Investigations From Very Small Strains to Beyond Failure - Multiscale Problems in Geomechanics (Micro-to-Macro Strains)
DOI https://doi.org/10.1051/e3sconf/202454405001
Published online 02 July 2024
  1. ASTM. 2016a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. [Google Scholar]
  2. ASTM D4253-16e1. West Conshohocken, PA: ASTM. [Google Scholar]
  3. ASTM. 2016b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254–16. West Conshohocken, PA: ASTM. [Google Scholar]
  4. Baldi, G., Nova R. “Membrane penetration effects in triaxial testing”, Journal of Geotechnical Engineering, 110(3), pp. 403–420, 1984. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:3(403). [CrossRef] [Google Scholar]
  5. Bandini, V., Coop, M. R. “The influence of particle breakage on the location of the critical state line of sands”, Soils Found., 51(4), pp. 591–600, 2011. https://doi.org/10.3208/sandf.51.591. [CrossRef] [Google Scholar]
  6. Been, K., Jefferies, M. G., Hachey, J. “The critical state of sands”, Geotechnique, 41(3), pp. 365–381, 1991. https://doi.org/10.1680/geot.1991.41.3.365. [CrossRef] [Google Scholar]
  7. Chang, C. S., Deng, Y. “Modeling for critical state line of granular soil with evolution of grain size distribution due to particle breakage”, Geosci. Front., 11(2), pp. 473–486, 2020. https://doi.org/10.1016/j.gsf.2019.06.008. [Google Scholar]
  8. Coop, M. R., Sorensen, K. K., Bodas-Freitas, T., Georgoutos, G. “Particle breakage during shearing of a carbonate sand”, Geotechnique, 54(3), pp. 157–163, 2004. https://doi.org/10.1680/geot.2004.54.3.157. [CrossRef] [Google Scholar]
  9. Einav, I. “Breakage mechanics—Part I: Theory”, J. Mech. Phys. Solids, 55(6), pp. 1274–1297, 2007. https://doi.org/10.1016/j.jmps.2006.11.003. [CrossRef] [Google Scholar]
  10. Fukushima, S., Tatsuoka, F. “Strength and deformation characteristics of saturated sands at extremely low pressures”, Soils and Found., 24(4), pp. 30–48, 1984. https://doi.org/10.3208/sandf1972.24.4_30. [CrossRef] [Google Scholar]
  11. Hardin, B. O. “Crushing of soil particles”, J. Geotech. Eng., 111(10), pp. 1177–1192, 1985. https://doi.org/10.1061/(ASCE)0733-410(1985)111:10(1177). [CrossRef] [Google Scholar]
  12. Indraratna, B., Wijewardena, L. S. S., Balasubramaniam, A. S. “Large-scale triaxial testing of greywacke rockfill”, Geotechnique, 43(1), pp. 37–51, 1993. https://doi.org/10.1680/geot.1993.43.1.37. [CrossRef] [Google Scholar]
  13. Kan, M. E., Taiebat, H. A. “A bounding surface plasticity model for highly crushable granular materials”, Soils Found., 54(6), pp. 1188–1201, 2014. https://doi.org/10.1016/j.sandf.2014.11.012. [CrossRef] [Google Scholar]
  14. Lade, P. V., Yamamuro, J. A., Bopp, P. A. “Significance of particle crushing in granular materials”, J. Geotech. Eng., 122(4), pp. 309–316, 1996. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309). [CrossRef] [Google Scholar]
  15. Lirer, S., Flora, A., Nicotera, M. V. “Some remarks on the coefficient of earth pressure at rest in compacted sandy gravel”, Acta Geotech., 6, pp. 1–12, 2011. https://doi.org/10.1007/s11440-010-0131-2. [CrossRef] [Google Scholar]
  16. Lowe, J. “Shear Strength of Coarse Embankment Dam Materials”, In: 8th International Congress on Large Dams, 3, pp. 745–761, 1964. [Google Scholar]
  17. Luzzani, L., Coop, M. R. “On the relationship between particle breakage and the critical state of sands”, Soils Found., 42(2), pp. 71–82, 2002. https://doi.org/10.3208/sandf.42.2_71. [CrossRef] [Google Scholar]
  18. Marachi, N. D., Chan, C. K., Seed, H. B. “Evaluation of properties of rockfill materials”, J. Soil. Mech. Found. Div., 98(1), pp. 95–114, 1972. https://doi.org/10.1061/JSFEAQ.0001735. [CrossRef] [Google Scholar]
  19. Marsal, R. J. “Large scale testing of rockfill materials”, J. Soil. Mech. Found., 93(2), pp. 27–43, 1967. https://doi.org/10.1061/JSFEAQ.0000958. [CrossRef] [Google Scholar]
  20. Lee, K. L., Farhoomand, I. “Compressibility and crushing of granular soil in anisotropic triaxial compression”, Can. Geotech. J., 4(1), pp. 68–86, 1967. https://doi.org/10.1139/t67-012. [CrossRef] [Google Scholar]
  21. McDowell, G. R., Bolton, M. D. “On the micromechanics of crushable aggregates”, Geotechnique, 48(5), pp. 667–679, 1998. https://doi.org/10.1680/geot.1998.48.5.667. [CrossRef] [Google Scholar]
  22. Oldecop, L. A., Alonso, E. E. “A model for rockfill compressibility”, Geotechnique, 51(7), pp. 127–139, 2001. https://doi.org/10.1680/geot.2001.51.2.127. [CrossRef] [Google Scholar]
  23. Roscoe, K. H., Schofield, M. A., Wroth, C. P. “On the yielding of soils”, Geotechnique, 8(1), pp. 22–53, 1958. https://doi.org/10.1680/geot.1958.8.1.22. [CrossRef] [Google Scholar]
  24. Russell, A. R., Khalili, N. “A bounding surface plasticity model for sands exhibiting particle crushing”, Can. Geotech. J., 41(6), pp. 1179–1192, 2004. https://doi.org/10.1139/t04-065. [CrossRef] [Google Scholar]
  25. Skoglund, K. A. “A study of some factors in mechanistic railway track design”, Department of Road and Railway Engineering, Norwegian University of Science and Technology, 2002. [Google Scholar]
  26. Tong, C.-X., Zhai, M.-Y., Li, H.-C., Sheng, Z. “Particle breakage of granular soils: changing critical state line and constitutive modelling”, Acta Geotech., 17, pp. 755–768, 2022. https://doi.org/10.1007/s11440-021-01231-8. [CrossRef] [Google Scholar]
  27. Ventini, R., Flora, A., Lirer, S., Mancuso, C. “Magnetic measurement system of sandy gravel specimens shape during tests in a large triaxial apparatus”, In: International Symposium on Deformation Characteristics of Geomaterials, IS-Glasgow 2019, Glasgow, Scotland, 2019a. https://doi.org/10.1051/e3sconf/20199202004. [Google Scholar]
  28. Ventini, R., Flora, A., Lirer, S., Mancuso, C. “On the effect of grading and degree of saturation on rockfill volumetric deformation”, In: Vol. 40 of Proc. CNRIG 2019: Geotechnical Research for Land Protection and Development, edited by F. Calvetti, F. Cotecchia, A. Galli, and C. Jommi, 462–471. Berlin: Springer, 2019b. https://doi.org/10.1007/978-3-030-21359-6_49. [Google Scholar]
  29. Ventini, R., Flora, A., Lirer, S., Mancuso, C., Cammarota, A. “An experimental study of the behaviour of two rockfills accounting for the effects of degree of saturation”, In: Proc., 4th European Conference on Unsaturated Soils (E-UNSAT 2020), Lisbon, Portugal, 2020. https://doi.org/10.1051/e3sconf/202019503033. [Google Scholar]
  30. Ventini, R., Lirer, S., Flora, A., Mancuso, C. “Simplified procedure to identify the critical state line of crushable rockfills”, J. of Geotech. and Geoenvir. Eng., 147(12), 2021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002668. [CrossRef] [Google Scholar]
  31. Wood, D. M., Maeda, K. “Changing grading of soil: Effect on critical states”, Acta Geotech., 3(1), pp. 3–14, 2008. https://doi.org/10.1007/s11440-007-0041-0. [CrossRef] [Google Scholar]
  32. Xiao, Y., Liu, H., Ding, X., Chen, Y., Jiang, J., Zhang, W. “Influence of particle breakage on critical state line of rockfill material”, Int. J. Geomech., 16(1), 2016. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.