Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 05002
Number of page(s) 5
Section Experimental Investigations From Very Small Strains to Beyond Failure - Multiscale Problems in Geomechanics (Micro-to-Macro Strains)
DOI https://doi.org/10.1051/e3sconf/202454405002
Published online 02 July 2024
  1. Bell, F.G. 1977. “A note on the geotechnical properties of the chalk.” Engineering Geology 11, 27–225. https://dx.doi.org/10.1016/0013-7952(77)90003-5 [Google Scholar]
  2. Conil, N., P. Gombert, M. Al-Heib, N. Spitzenteder, R. Muller, and D. Pajiep. 2022. “An underground research laboratory at Château-Landon (France) to study the impact of climate change on the stability of abandoned mines.” Bulletin of Engineering Geology and the Environment (accepted). [Google Scholar]
  3. Delage, P., M.D. Howat, and Y.J. Cui. 1998. “The relationship between suction and swelling properties in a heavily compacted unsaturated soil.” Engineering Geology 50, 31–48. https://dx.doi.org/10.1016/S0013-7952(97)00083-5 [CrossRef] [Google Scholar]
  4. Doremus, C. 1978. Les craies du Nord de la France—corrélations entre la lithostratigraphie, la microstructure et les propriétés mécaniques. PhD thesis, University of Lille I. [Google Scholar]
  5. Han, B., S. Y. Xie, and J. F. Shao. 2016. “Experimental investigation on mechanical behavior and permeability evolution of a porous limestone under compression.” Rock Mech. Rock Eng. 49, 3425–3435. https://dx.doi.org/10.1007/s00603-016-1000-6 [CrossRef] [Google Scholar]
  6. Homand, S. and J.F. Shao. 2000. “Mechanical Behaviour of a Porous Chalk and Water/Chalk interaction. Part 1: Experimental Study.” Oil Gas Sci Technol, 55 (6), 591–598. https://dx.doi.org/10.2516/ogst:2000044 [CrossRef] [Google Scholar]
  7. Lafrance, N., C. Auvray, S. Mountaka and V. Labiouse. 2016. “Impact of weathering on macro-mechanical properties of chalk: Local pillar-scale study of two underground quarries in the Paris Basin.” Engineering Geology 213, 107–119. https://doi.org/10.1016/j.enggeo.2016.08.014 [CrossRef] [Google Scholar]
  8. Senfaute, G., D. Amitrano, F. Lenhard, and J. Morel. 2005. “Etude en laboratoire par méthodes acoustiques de l’endommagement des roches de craie et corrélation avec des résultats in situ.” Revue Française de Géotechnique 110, 9–18. http://dx.doi.org/10.1051/geotech/2005110009 [CrossRef] [EDP Sciences] [Google Scholar]
  9. Shen, W. Q., D. Kondo, L. Dormieux, and J. F. Shao. 2013. “A close-form three scale model for ductile rocks with a plastically compressible porous matrix.” Mech Mater 59, 73–86. https://dx.doi.org/10.1016/j.mechmat.2012.12.008 [CrossRef] [Google Scholar]
  10. Shen, W. Q., and J. F. Shao. 2018. “A micro-mechanicsbased elastic–plastic model for porous rocks: Applications to sandstone and chalk.” Acta Geotechnica 13, 329–340. https://doi.org/10.1007/s11440-017-0536-2 [Google Scholar]
  11. Wong, T. F., C. David, and W. Zhu. 1997. “The transition from brittle faulting to cataclastic flow in porous sandstone: mechanical deformation.” J Geophys Res 102, 3009–3025. https://doi.org/10.1029/96JB03281 [CrossRef] [Google Scholar]
  12. Xie, S.Y. and J.F. Shao. 2006. “Elastoplastic Deformation of a Porous Rock and Water Interaction.” Int Jl of Plast 22 (12), 2195‑2225. http://dx.doi.org/10.1520/JTE20170073 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.