Open Access
Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 6 | |
Section | Experimental Investigations From Very Small Strains to Beyond Failure - Multiscale Problems in Geomechanics (Micro-to-Macro Strains) | |
DOI | https://doi.org/10.1051/e3sconf/202454405003 | |
Published online | 02 July 2024 |
- Airò Farulla, C., Ferrari, A. & Romero, E. 2010. Volume change behaviour of a compacted scaly clay during cyclic suction changes. Canadian Geotechnical Journal, 47, 688–703. [CrossRef] [Google Scholar]
- Alder, B. J. & Wainwright, T. E. 1959. Studies in molecular dynamics. I. General method. The Journal of Chemical Physics, 31, 459–466. [Google Scholar]
- Alonso, E., Gens, A. & Hight, D. Special problem soils. General report. Proceedings of the 9th European conference on soil mechanics and foundation engineering, Dublin, 1987. 1087–1146. [Google Scholar]
- Anandarajah, A. 2000. Numerical simulation of one-dimensional behaviour of a kaolinite. Geotechnique, 50, 509–519. [CrossRef] [Google Scholar]
- Andò, E., Hall, S. A., Viggiani, G., Desrues, J. & Bésuelle, P. 2012. Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotechnica, 7, 1–13. [CrossRef] [Google Scholar]
- Behnsen, J. & Faulkner, D. 2013. Permeability and frictional strength of cation-exchanged montmorillonite. Journal of Geophysical Research: Solid Earth, 118, 2788–2798. [CrossRef] [Google Scholar]
- Bickmore, B. R., Hochella, M. F., Bosbach, D. & Charlet, L. 1999. Methods for performing atomic force microscopy imaging of clay minerals in aqueous solutions. Clays and Clay Minerals, 47, 573–581. [CrossRef] [Google Scholar]
- Birmpilis, G., Hall, S. A., Lages, S. & Dijkstra, J. 2019. Monitoring of the nano-structure response of natural clay under mechanical perturbation using small angle X-ray scattering and digital image correlation. Acta Geotechnica, 14, 1965–1975. [CrossRef] [Google Scholar]
- Birmpilis, G., Mohammadi, A. S., Villanova, J., Boller, E., Ando, E. & Dijkstra, J. 2022. Fabric Investigation of Natural Sensitive Clay from 3D Nano-and Microtomography Data. J. Eng. Mech, 148, 04021151. [Google Scholar]
- Brady, N. C. & Weil, R. R. 1996. The nature and properties of soils, Prentice-Hall Inc. [Google Scholar]
- Braggs, B., Fornasiero, D., Ralston, J. & Smart, R. S. 1994. The effect of surface modification by an organosilane on the electrochemical properties of kaolinite. Clays and Clay Minerals, 42, 123–136. [CrossRef] [Google Scholar]
- Calvetti, F., Combe, G. & Lanier, J. 1997. Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mechanics of Cohesive-frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures, 2, 121–163. [Google Scholar]
- Collins, K. T. & Mcgown, A. 1974. The form and function of microfabric features in a variety of natural soils. Geotechnique, 24, 223–254. [CrossRef] [Google Scholar]
- Cundall, P. A. & Strack, O. D. 1979. A discrete numerical model for granular assemblies. Geotechnique, 29, 47–65. [CrossRef] [Google Scholar]
- Danilatos, G. 1993. Introduction to the ESEM instrument. Microscopy research and technique, 25, 354–361. [CrossRef] [PubMed] [Google Scholar]
- Delage, P., Audiguier, M., Cui, Y.-J. & Howat, M. D. 1996. Microstructure of a compacted silt. Canadian Geotechnical Journal, 33, 150–158. [CrossRef] [Google Scholar]
- Delage, P. & Lefebvre, G. 1984. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Canadian Geotechnical Journal, 21, 21–35. [CrossRef] [Google Scholar]
- Desbois, G., Höhne, N., Urai, J. L., Bésuelle, P. & Viggiani, G. 2017a. Deformation in cemented mudrock (Callovo–Oxfordian Clay) by microcracking, granular flow and phyllosilicate plasticity: insights from triaxial deformation, broad ion beam polishing and scanning electron microscopy. Solid Earth, 8, 291–305. [CrossRef] [Google Scholar]
- Desbois, G., Schmatz, J., Klaver, J. & Urai, J. L. Micro-fabric damages in Boom Clay inferred from cryo-BIB-SEM experiment: recent results. EGU General Assembly Conference Abstracts, 2017b. 4461. [Google Scholar]
- Fenkel, D. & Smit, B. 2002. Understanding Molecular Simulations from Algorithms to Applications. San Diego, CA: Academic) p. [Google Scholar]
- Ganor, J., Mogollón, J. L. & Lasaga, A. C. 1995. The effect of pH on kaolinite dissolution rates and on activation energy. Geochimica et Cosmochimica Acta, 59, 1037–1052. [CrossRef] [Google Scholar]
- Gupta, V. & Miller, J. D. 2010. Surface force measurements at the basal planes of ordered kaolinite particles. Journal of Colloid and Interface Science, 344, 362–371. [CrossRef] [PubMed] [Google Scholar]
- Hattab, M. & Fleureau, J.-M. 2010. Experimental study of kaolin particle orientation mechanism. Géotechnique, 60, 323–331. [CrossRef] [Google Scholar]
- Hattab, M., Hammad, T., Fleureau, J.-M. & HICHER, P.-Y. 2013. Behaviour of a sensitive marine sediment: microstructural investigation. Géotechnique, 63, 71–84. [CrossRef] [Google Scholar]
- Houghton, H. & Donald, A. 2008. An environmental scanning electron microscopy study of aqueous gibbsite suspensions. Scanning: The Journal of Scanning Microscopies, 30, 223–227. [Google Scholar]
- Ibeh, C. U., Pedrotti, M., Tarantino, A. & Lunn, R. J. 2021. PLATYMATCH–A particle-matching algorithm for the analysis of platy particle kinematics using X-ray Computed Tomography. Computers and Geotechnics, 138, 104367. [Google Scholar]
- Israelachvili, J. N. 2011. Intermolecular and surface forces, Academic press. [Google Scholar]
- Ivashchenko, O. 2022. Cryo-SEM and confocal LSM studies of agar gel, nanoparticle hydrocolloid, mineral clays and saline solutions. Scientific reports, 12, 1–15. [PubMed] [Google Scholar]
- Kumar, N., Zhao, C., Klaassen, A., Van Den Ende, D., Mugele, F. & Siretanu, I. 2016. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy. Geochimica et Cosmochimica Acta, 175, 100–112. [CrossRef] [Google Scholar]
- Lambe, T. W. 1958. The structure of compacted clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 84, 1–34. [Google Scholar]
- Mitchell, J. & Soga, K. 2005. Fundamentals of Soil Behavior, Jon Wiley and Sons Inc. Hoboken, NJ. [Google Scholar]
- Mitchell, J. K. The fabric of natural clays and its relation to engineering properties. 1956. [Google Scholar]
- Monroy, R., Zdravkovic, L. & Ridley, A. 2010. Evolution of microstructure in compacted London Clay during wetting and loading. Geotechnique, 60, 105–119. [CrossRef] [Google Scholar]
- Morgenstern, N. & Tchalenko, J. 1967. Microscopic structures in kaolin subjected to direct shear. [Google Scholar]
- Morrow, C. A., Moore, D. E. & Lockner, D. A. 2017. Frictional strength of wet and dry montmorillonite. Journal of Geophysical Research: Solid Earth, 122, 3392–3409. [CrossRef] [Google Scholar]
- Oda, M. & Kazama, H. 1998. Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique, 48, 465–481. [CrossRef] [Google Scholar]
- Oda, M., Kazama, H. & Konishi, J. 1998. Effects of induced anisotropy on the development of shear bands in granular materials. Mechanics of materials, 28, 103–111. [CrossRef] [Google Scholar]
- Pedrotti, M. & Tarantino, A. 2018. An experimental investigation into the micromechanics of non-active clays. Géotechnique, 1–18. [Google Scholar]
- Rand, B. & Melton, I. E. 1977. Particle interactions in aqueous kaolinite suspensions:: I. Effect of pH and electrolyte upon the mode of particle interaction in homoionic sodium kaolinite suspensions. Journal of Colloid and Interface Science, 60, 308–320. [CrossRef] [Google Scholar]
- Rand, B., Pekenć, E., Goodwin, J. W. & Smith, R. W. 1980. Investigation into the existence of edge—face coagulated structures in Na-montmorillonite suspensions. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 76, 225–235. [CrossRef] [Google Scholar]
- Romero, E., Gens, A. & Lloret, A. 1999. Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Engineering Geology, 54, 117–127. [CrossRef] [Google Scholar]
- Romero, E. & Simms, P. H. 2008. Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotechnical and Geological Engineering, 26, 705–727. [CrossRef] [Google Scholar]
- Saiyouri, N., Tessier, D. & Hicher, P.-Y. 2004. Experimental study of swelling in unsaturated compacted clays. Clay minerals, 39, 469–479. [CrossRef] [Google Scholar]
- Santamarina, J., Klein, K., Wang, Y.-H. & Prencke, E. 2002. Specific surface: determination and relevance. Canadian Geotechnical Journal, 39, 233–241. [CrossRef] [Google Scholar]
- Shen, R., Zhang, X., Ke, Y., Xiong, W., Guo, H., Liu, G., Zhou, H. & Yang, H. 2021. An integrated pore size distribution measurement method of small angle neutron scattering and mercury intrusion capillary pressure. Scientific Reports, 11, 1–11. [PubMed] [Google Scholar]
- Sides, G. & Barden, L. 1971. The microstructure of dispersed and flocculated samples of kaolinite, illite, and montmorillonite. Canadian Geotechnical Journal, 8, 391–399. [CrossRef] [Google Scholar]
- Sloane, R. L. & Kell, T. 1966. The fabric of mechanically compacted kaolin. Clays and Clay Minerals, 14, 289–295. [CrossRef] [Google Scholar]
- Sposito, G. 1984. The surface chemistry of soils, Oxford University Press. [Google Scholar]
- Sposito, G. 1998. On points of zero charge. Environmental science & technology, 32, 2815–2819. [CrossRef] [Google Scholar]
- Van Olphen, H. 1977. Clay Colloid Chemistry: For Clay Technologists, Geologists and Soil Scientists, John Wiley. [Google Scholar]
- Yoshinaka, R. & Kazama, H. 1973. Microstructure of compacted kaolin clay. Soils and foundations, 13, 19–34. [CrossRef] [Google Scholar]
- Yuan, S., Liu, X. & Buzzi, O. 2019. Technical aspects of mercury intrusion porosimetry for clays. Environmental Geotechnics, 8, 255–263. [Google Scholar]
- Zhao, B., Wang, J., Coop, M., Viggiani, G. & Jiang, M. 2015. An investigation of single sand particle fracture using X-ray micro-tomography. Géotechnique, 65, 625–641. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.