Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 10010
Number of page(s) 6
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Cyclic and Dynamic Behaviour
DOI https://doi.org/10.1051/e3sconf/202454410010
Published online 02 July 2024
  1. Bellotti, R., Ghionna, V., Jamiolkowski, M., Robertson, P. K., & Peterson, R. W. “Interpretation of moduli from selfboring pressuremeter tests in sand”. Geotechnique, 39(2), 269–292, 1989 https://doi.org/10.1680/geot.1989.39.2.269 [CrossRef] [Google Scholar]
  2. Bolton, M. D. “The strength and dilatancy of sands”. Geotechnique, 36(1), 65–78, 1986, https://doi.org/10.1680/geot.1986.36.1.65 [CrossRef] [Google Scholar]
  3. Chaney, R. C. “Saturation effects on the cyclic strength of sands”. Soil Dynamics and Earthquake Engineering, 1, 342–358, 1978. [Google Scholar]
  4. Chin, K.-B., Leong, E., & Rahardjo, H. Cyclic behaviour of unsaturated silt in suction-controlled simple shear apparatus, pp. 65–70, 2010. [Google Scholar]
  5. Dafalias, Y. F., & Manzari, M. T. (2004). “Simple Plasticity Sand Model Accounting for Fabric Change Effects”, Journal of Engineering Mechanics, 130(6), 622–634.,2004, https://doi.org/10.1061/(asce)0733-9399(2004)130:6(622) [CrossRef] [Google Scholar]
  6. Dafalias, Y. F., & Popov, E. P. “A model of nonlinearly hardening materials for complex loading”, Acta Mechanica, 21(3), 173–192,1975 https://doi.org/10.1007/bf01181053 [CrossRef] [Google Scholar]
  7. Desai, C. S., Somasundaram, S., & Frantziskonis, G. “A hierarchical approach for constitutive modelling of geologic materials”, International Journal for Numerical and Analytical Methods in Geomechanics, 10(3), 225–257, 1986 https://doi.org/10.1002/nag.1610100302 [CrossRef] [Google Scholar]
  8. Ghayoomi, M., McCartney, J. S., & Ko, H.-Y. “Empirical Methodology to Estimate Seismically Induced Settlement of Partially Saturated Sand”, Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 367–376, 2013 https://doi.org/10.1061/(asce)gt.1943-5606.0000774 [CrossRef] [Google Scholar]
  9. Ghorbani, J., & Airey, D. “Mechanism of dissipation of excess flow pressures in unsaturated granular soils subjected to seismic excitations”, Japanese Geotechnical Society Special Publication, 7(2), 595–600, 2019. https://doi.org/10.3208/jgssp.v07.092 [CrossRef] [Google Scholar]
  10. Ghorbani, J., & Airey, D. W. “Modelling stress-induced anisotropy in multi-phase granular soils”, Computational Mechanics, 67(2), 497–521, 2021, https://doi.org/10.1007/s00466-020-01945-8 [CrossRef] [Google Scholar]
  11. Ghorbani, J., Airey, D. W., El-Zein, “A. Numerical framework for considering the dependency of SWCCs on volume changes and their hysteretic responses in modeling elasto-plastic response of unsaturated soils”. Computer Methods in Applied Mechanics and Engineering, 336, 80–110, 2018, https://doi.org/10.1016/j.cma.2018.03.008 [CrossRef] [Google Scholar]
  12. Ghorbani, J., Nazem, M., & Carter, J. P. “Numerical modeling of multiphase flow in unsaturated deforming porous media”, Computers and Geotechnics, 71, 195–206, 2016 https://doi.org/10.1016/j.compgeo.2015.09.011 [CrossRef] [Google Scholar]
  13. Ghorbani, J., Nazem, M., Carter, J. P., & Sloan, S. W. A stress integration scheme for elasto-plastic response of unsaturated soils subjected to large deformations. Computers and Geotechnics, 94, 231–246, 2018. https://doi.org/10.1016/j.compgeo.2017.09.012 [Google Scholar]
  14. Ishihara, K., Tsukamoto, Y., & Kamada, K. “Undrained behaviour of near-saturated sand in cyclic and monotonic loading”, Cyclic Behaviour of Soils and Liquefaction Phenomena, 27–39, 2004. https://doi.org/10.1201/9781439833452.ch4 [Google Scholar]
  15. Ishikawa, T., Zhang, Y., Tokoro, T., & Miura, S. “Medium-size triaxial apparatus for unsaturated granular subbase course materials”, Soils and Foundations, 54(1), 67–80, 2014, https://doi.org/10.1016/j.sandf.2013.12.007 [CrossRef] [Google Scholar]
  16. Khalili, N., Habte, M. A., & Zargarbashi, S. “A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis” Computers and Geotechnics, 35(6), 872–889, 2008. https://doi.org/10.1016/j.compgeo.2008.08.003 [CrossRef] [Google Scholar]
  17. Kimoto, S., Oka, F., Fukutani, J., Yabuki, T., & Nakashima, K. “Monotonic and Cyclic Behavior of Unsaturated Sandy Soil Under Drained and Fully Undrained Conditions”, Soils and Foundations, 51(4), 663–681, 2011. https://doi.org/10.3208/sandf.51.663 [CrossRef] [Google Scholar]
  18. Krieg, R. D. “A Practical Two Surface Plasticity Theory”, Journal of Applied Mechanics, 42(3), 641, 1975. https://doi.org/10.1115/1.3423656 [CrossRef] [Google Scholar]
  19. Lewis, R. W., & Schrefler, B. A. “Finite element simulation of the subsidence of a gas reservoir undergoing a waterdrive”. Finite Elements in Fluids, 179–199, 1982 [Google Scholar]
  20. Manzari, M. T., & Dafalias, Y. F. “A critical state two-surface plasticity model for sands”. Géotechnique, 47(2), 255–272, 1997. https://doi.org/10.1680/geot.1997.47.2.255 [CrossRef] [Google Scholar]
  21. Mohammadi, A., & Airey, D. “Undrained response of Sydney sand under non-reversal cyclic loading”. E3S Web of Conferences, 92, 08005, 2019. https://doi.org/10.1051/e3sconf/20199208005 [CrossRef] [EDP Sciences] [Google Scholar]
  22. Mróz, Z. “On the description of anisotropic workhardening”, Journal of the Mechanics and Physics of Solids, 15(3), 163–175, 1967. https://doi.org/10.1016/0022-5096(67)90030-0 [CrossRef] [Google Scholar]
  23. Nova, R. “On the hardening of soils”. Archiwum Mechaniki Stosowaney, 29, 445–458, 1977 [Google Scholar]
  24. Nova, R., & Wood, D. M. “A constitutive model for soil under monotonic and cyclic loading”, Soil mechanics-transient and cyclic loading, 343–373, 1982. [Google Scholar]
  25. Ohiduzzaman, M., Lo, S. C. R., & Craciun, O. “Effect of Plasticity of Fines on the Deformation Behavior of Unbound Granular Base Material”, Geo-Frontiers 2011. https://doi.org/10.1061/41165(397)489 [Google Scholar]
  26. Pestana, J. M., & Whittle, A. J. Compression model for cohesionless soils. Géotechnique, 45(4), 611–631, 1995. https://doi.org/10.1680/geot.1995.45.4.611 [Google Scholar]
  27. Pestana, J. M., & Whittle, A. J. “ Formulation of a unified constitutive model for clays and sands”, International Journal for Numerical and Analytical Methods in Geomechanics, 23, 12., 1999https://doi.org/10.1002/(SICI)1096-9853(199910)23:12%3C1215::AID-NAG29%3E3.0.CO;2-F [Google Scholar]
  28. Pestana, J. M., Whittle, A. J., & Gens, A. “Evaluation of a constitutive model for clays and sands: Part II – clay behaviour”, International Journal for Numerical and Analytical Methods in Geomechanics, 26(11), 1123–1146, 2002 https://doi.org/10.1002/nag.238 [CrossRef] [Google Scholar]
  29. Rahman, M. M., & Lo, S. R. “ On intergranular void ratio of loose sand with small amount of fines”, In: 16th South East Asian Geotechnical Conference (2007 SEAG), 255–260, 2007 [Google Scholar]
  30. Rowe, P. W. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact”, In:. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339), 500–527, 1962 https://doi.org/10.1098/rspa.1962.0193 [Google Scholar]
  31. Shahbodagh-Khan, B., Khalili, N., & Alipour Esgandani, G. “A numerical model for nonlinear large deformation dynamic analysis of unsaturated porous media including hydraulic hysteresis”, Computers and Geotechnics, 69, 411–423, 2015. https://doi.org/10.1016/j.compgeo.2015.06.008 [CrossRef] [Google Scholar]
  32. Sloan, S. W., Abbo, A. J., & Sheng, D.. “Refined explicit integration of elastoplastic models with automatic error control”, Engineering Computations, 18(1/2), 121–194, 2001. https://doi.org/10.1108/02644400110365842 [Google Scholar]
  33. Taiebat, M., & Dafalias, Y. F. ““SANISAND: Simple anisotropic sand plasticity model”, International Journal for Numerical and Analytical Methods in Geomechanics, 32(8), 915–948, 2008. https://doi.org/10.1002/nag.651 [CrossRef] [Google Scholar]
  34. Taylor, D. W. “Fundamentals of Soil Mechanics. Soil Science”, 66(2), 161 https://journals.lww.com/soilsci/Citation/1948/08000/Fundamentals_of_Soil_Mechanics.8.aspx, 1948 [CrossRef] [Google Scholar]
  35. Tsukamoto, Y., Kawabe, S., Matsumoto, J., & Hagiwara, S. “Cyclic resistance of two unsaturated silty sands against soil liquefaction”, Soils and Foundations, 54(6), 1094–1103, 2014. https://doi.org/10.1016/j.sandf.2014.11.005 [CrossRef] [Google Scholar]
  36. Unno, T., Kazama, M., Uzuoka, R., & Sento, N. “Liquefaction of Unsaturated Sand Considering the Pore Air Pressure and Volume Compressibility of the Soil Particle Skeleton”, Soils and Foundations, 48(1), 87–99, 2008. https://doi.org/10.3208/sandf.48.87 [CrossRef] [Google Scholar]
  37. Wang, H., Koseki, J., Sato, T., Chiaro, G., & Tan Tian, J. “Effect of saturation on liquefaction resistance of iron ore fines and two sandy soils”, Soils and Foundations, 56(4), 732–744, 2016. https://doi.org/10.1016/j.sandf.2016.07.013 [CrossRef] [Google Scholar]
  38. Whang, D. H., Stewart, J. P., & Bray, J. D. “Effect of compaction conditions on the seismic compression of compacted fill soils”, Geotechnical Testing Journal, 27(4), 2004. https://trid.trb.org/view/704597 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.