Open Access
Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 10011 | |
Number of page(s) | 7 | |
Section | Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Cyclic and Dynamic Behaviour | |
DOI | https://doi.org/10.1051/e3sconf/202454410011 | |
Published online | 02 July 2024 |
- Agnolin, I. and Roux, J.N. “Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks”. Physical Review E, 76(6), p. 061302, 2007. https://doi.org/10.1103/PhysRevE.76.061302 [Google Scholar]
- Banerjee, S.K., Yang, M. and Taiebat, M. “Effect of coefficient of uniformity on cyclic liquefaction resistance of granular materials”. Computers and Geotechnics, 155, p. 105232, 2023. https://doi.org/10.1016/j.compgeo.2022.105232 [CrossRef] [Google Scholar]
- Gu, X., Zhang, J. and Huang, X. “DEM analysis of monotonic and cyclic behaviors of sand based on critical state soil mechanics framework”. Computers and Geotechnics, 128, p. 103787, 2020. https://doi.org/10.1016/j.compgeo.2020.103787 [CrossRef] [Google Scholar]
- Huang, X., Hanley, K.J., Zhang, Z. and Kwok, C.Y. “Structural degradation of sands during cyclic liquefaction: Insight from DEM simulations”. Computers and Geotechnics, 114, p. 103139, 2019. https://doi.org/10.1016/j.compgeo.2019.103139 [CrossRef] [Google Scholar]
- Kloss, C., Goniva, C., Hager, A., Amberger, S. and Pirker, S. “Models, algorithms and validation for opensource DEM and CFD–DEM”. Progress in Computational Fluid Dynamics, an International Journal, 12(2–3), pp. 140–152, 2012. http://dx.doi.org/10.1504/PCFD.2012.047457 [CrossRef] [Google Scholar]
- Mitchell, J.K. and Soga, K. “Fundamentals of soil behavior”, Vol. 3, John Wiley & Sons, New York, USA, 2005. [Google Scholar]
- Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K. and Arulanandan, K. “Effects of sample preparation on sand liquefaction”. Journal of the Geotechnical Engineering Division, 103(2), pp. 91–108, 1977. https://doi.org/10.1061/AJGEB6.0000387 [CrossRef] [Google Scholar]
- Mutabaruka, P., Taiebat, M., Pellenq, R.J.-M., and Radjai, F. (2019). “Effects of size polydispersity on random closepacked configurations of spherical particles.” Physical Review E, 100(4), 042906. https://doi.org/10.1103/PhysRevE.100.042906 [CrossRef] [PubMed] [Google Scholar]
- Ni, X., Ye, B., Zhang, F. and Feng, X. “Influence of specimen preparation on the liquefaction behaviors of sand and its mesoscopic explanation”. Journal of Geotechnical and Geoenvironmental Engineering, 147(2), 04020161, 2021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002456 [CrossRef] [Google Scholar]
- Ni, X., Zhang, Z., Ye, B. and Zhang, S. “Influence of anisotropy on liquefaction/reliquefaction resistance of granular materials and its quantitative evaluation”. Soil Dynamics and Earthquake Engineering, 161, p. 107415, 2022. https://doi.org/10.1016/j.soildyn.2022.107415 [CrossRef] [Google Scholar]
- Oda, M. “Fabric tensor for discontinuous geological materials”. Soils and foundations, 22(4), pp. 96–108, 1982. http://dx.doi.org/10.3208/sandf1972.22.4_96 [CrossRef] [Google Scholar]
- Oda, M., Kawamoto, K., Suzuki, K., Fujimori, H. and Sato, M. “Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading”. Journal of Geotechnical and Geoenvironmental Engineering, 127(5), pp. 416–423, 2001. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(416) [CrossRef] [Google Scholar]
- Otsubo, M., Chitravel, S., Kuwano, R., Hanley, K.J., Kyokawa, H. and Koseki, J. “Linking inherent anisotropy with liquefaction phenomena of granular materials by means of DEM analysis”. Soils and Foundations, 62(5), p. 101202, 2022. https://doi.org/10.1016/j.sandf.2022.101202 [CrossRef] [Google Scholar]
- Taiebat, M., Mutabaruka, P., Pellenq, R. and Radjai, F. “Effect of particle size distribution on 3D packings of spherical particles.” In EPJ Web of Conferences, vol. 140, p. 02030. EDP Sciences, 2017. https://doi.org/10.1051/epjconf/201714002030 [CrossRef] [EDP Sciences] [Google Scholar]
- Tatsuoka, F., Muramatsu, M. and Sasaki, T. “Cyclic undrained stress-strain behavior of dense sands by torsional simple shear test”. Soils and Foundations, 22(2), pp. 55–70, 1982. https://doi.org/10.3208/sandf1972.22.2_55 [CrossRef] [Google Scholar]
- Thornton, C. “Numerical simulations of deviatoric shear deformation of granular media”. Géotechnique, 50(1), pp. 43–53, 2000. https://doi.org/10.1680/geot.2000.50.1.43 [CrossRef] [Google Scholar]
- Vaid, YP and Sivathayalan, S. “Fundamental factors affecting liquefaction susceptibility of sands”. Canadian Geotechnical Journal, 37 (3), pp. 592–606, 2000. https://doi.org/10.1139/t00-040 [CrossRef] [Google Scholar]
- Wang, G. and Wei, J. “Microstructure evolution of granular soils in cyclic mobility and post-liquefaction process”. Granular Matter, 18, pp. 1–13, 2016. https://doi.org/10.1007/s10035-016-0621-5 [CrossRef] [Google Scholar]
- Wei, J. and Wang, G. “Discrete-element method analysis of initial fabric effects on pre-and post-liquefaction behavior of sands”. Géotechnique Letters, 7(2), pp. 161–166, 2017. http://dx.doi.org/10.1680/jgele.16.00147 [CrossRef] [Google Scholar]
- Wood, F.M., Yamamuro, J.A. and Lade, P.V. “Effect of depositional method on the undrained response of silty sand”. Canadian Geotechnical Journal, 45(11), pp. 1525–1537, 2008. https://doi.org/10.1139/T08-079 [CrossRef] [Google Scholar]
- Yamashita, S. and Toki, S. “Effects of fabric anisotropy of sand on cyclic undrained triaxial and torsional strengths”. Soils and Foundations, 33(3), pp. 92–104, 1993. https://doi.org/10.3208/sandf1972.33.3_92 [CrossRef] [Google Scholar]
- Yang, M., Taiebat, M., Mutabaruka, P. and Radjaï, F. “Evolution of granular materials under isochoric cyclic simple shearing”. Physical Review E, 103(3), 032904, 2021. https://doi.org/10.1103/PhysRevE.103.032904 [CrossRef] [PubMed] [Google Scholar]
- Yang, M., Taiebat, M., Mutabaruka, P. and Radjaï, F. “Evolution of granular media under constant-volume multidirectional cyclic shearing”. Acta Geotechnica, 17(3), pp. 779–802, 2022a. https://doi.org/10.1007/s11440-021-01239-0 [CrossRef] [Google Scholar]
- Yang, M., Taiebat, M. and Radjaï, F. “Liquefaction of granular materials in constant-volume cyclic shearing: Transition between solid-like and fluid-like states”. Computers and Geotechnics, 148, p. 104800, 2022b. https://doi.org/10.1016/j.compgeo.2022.104800 [CrossRef] [Google Scholar]
- Yang, Z.X., Li, X.S. and Yang, J. “Quantifying and modeling fabric anisotropy of granular soils”. Géotechnique, 58(4), 237–248, 2008. https://doi.org/10.1680/geot.2008.58.4.237 [CrossRef] [Google Scholar]
- Zhang, A., Jiang, M. and Wang, D. “Effect of fabric anisotropy on the cyclic liquefaction of sands: Insight from DEM simulations”. Computers and Geotechnics, 155, 105188, 2023. https://doi.org/10.1016/j.compgeo.2022.105188 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.