Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 11001
Number of page(s) 7
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Soil Stabilisation and Improvement
DOI https://doi.org/10.1051/e3sconf/202454411001
Published online 02 July 2024
  1. American Society For Testing And Materials. ASTM D1633–17, Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders, ASTM International, West Conshohocken, PA, 2017, www.astm.org [Google Scholar]
  2. Arthur JRF.; Chua KS.; Dunstan, T. (1977) Induced anisotropy in a sand. Geotechnique, 27(1), 13–30 [CrossRef] [Google Scholar]
  3. Carneiro FLB, Barcellos A (1953) Concrete tensile strength. Testing Research Laboratory Paris, France, Bulletin No. 13, pp 97–127 [Google Scholar]
  4. Consoli NC, Cruz RC, Floss MF, Festugato L (2010) Parameters controlling tensile and compressive strength of artificially cemented sand. J Geotech Geoenviron Eng 136(5):759–763 [CrossRef] [Google Scholar]
  5. Consoli NC, Dallarosa F, Fonini A (2009b) Plate load tests on cemented soil layers overlaying weaker soil. J Geotech Geoenviron Eng 135(12):1846–1856 [CrossRef] [Google Scholar]
  6. Consoli NC, Ferreira PMV, Tang CS, Marques SFV, Festugato L, Corte MB (2016b) A unique relationship determining strength of silty/clayey soils – Portland cement mixes. Soils and Foundations 56(6): 1082–1088 [CrossRef] [Google Scholar]
  7. Consoli NC, Foppa D, Festugato L, Heineck KS (2007) Key parameters for strength control of artificially cemented soils. J Geotech Geoenviron Eng 133(2):197–205 [CrossRef] [Google Scholar]
  8. Consoli NC, Marques SFV, Floss MF, Festugato L (2017) Broad-spectrum empirical correlation determining tensile and compressive strength of cement bonded clean granular soils. J Mater Civ Eng 29(6):06017004 [Google Scholar]
  9. Consoli NC, Thome A, Donato M, Graham KS (2008) Loading tests on compacted soil-bottom ash-carbide lime layers. Proc Inst Civ Eng Geotech Eng 161(1):29–38 Consoli NC, Viana da Fonseca A, Cruz RC, Heineck KS (2009a) Fundamental parameters for the stiffness and strength control of artificially cemented sand. J Geotech Geoenviron Eng 135(9):1347–1353 [CrossRef] [Google Scholar]
  10. Consoli N.C.; Cruz, R. C.; Consoli, B. S.; Maghous, S. Failure envelope of artificially cemented sand. Geotechnique, v. 62, n. 00, p. 1–5, 2012a. [Google Scholar]
  11. Consoli N.C.; da Fonseca, A. V.; Silva, S. R.; Cruz, R. C.; Fonini, A. Parameters controlling stiffness and strength of artificially cemented soils. Geotechnique, v. 62, n. 2, p. 177–183, 2012b. [Google Scholar]
  12. Diambra A, Ibraim E, Festugato L., Corte, MB. (2019). Stiffness of artificially cemented sands: insight on characterisation through empirical power relationships. Road Materials and Pavement Design, 1–11. https://doi.org/10.1080/14680629.2019.1705379 [Google Scholar]
  13. Diambra A, Ibraim E, Peccin A, Consoli NC, Festugato L (2017) Theoretical derivation of artificially cemented granular soil strength. J Geotech Geoenviron Eng 143(5):04017003 [CrossRef] [Google Scholar]
  14. Diambra A, Festugato L, Peccin da Silva A, Consoli NC, Ibraim E (2018) Modelling tensile/compressive strength ratio of artificially cemented clean sands. Soils Found 58(1):199–211 [CrossRef] [Google Scholar]
  15. Diambra, A.; Ibraim, E. Fibre-reinforced sand: interaction at the fibre and grain scale. Geotechnique, v. 64, n. 4, p. 296–308, 2015. https://doi.org/10.1680/geot.14.P.206 [Google Scholar]
  16. Diambra, A.; Ibraim, E.; Festugato, L.; Corte, M. B. Stiffness of artificially cemented sands: insight on characterization through empirical power relationships, Road Materials and Pavement Design, 2019. https://doi.org/10.1080/14680629.2019.1705379 [Google Scholar]
  17. Diambra, A.; Ibraim, E.; Muir Wood, D.; Russell, A. R. Fibre reinforced sands: experiments and modelling. Geotextiles and Geomembranes, v. 28, n. 3, p. 238–250, 2010. https://doi.org/10.1016/j.geotexmem.2009.09.010 [CrossRef] [Google Scholar]
  18. Diambra, A.; Ibraim, E.; Peccin, A.; Consoli, N. C.; Festugato, L. Theoretical derivation of artificially cemented granular soil strength. Journal of Geotechnical and Geoenvironmental Engineering, v. 143, n. 5, 04017003, 2017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646 [CrossRef] [Google Scholar]
  19. Diambra, A.; Ibraim, E.; Peccin, A.; Consoli, N. C.; Festugato, L. Theoretical derivation of artificially cemented granular soil strength. Journal of Geotechnical and Geoenvironmental Engineering, v. 143, n. 5, p. 1–9, 2017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646 [Google Scholar]
  20. Diambra, A.; Ibraim, E.; Russel, A.; Wood, D. M. Fibre reinforced sands: from experiments to modelling and beyond. Int. J. Numer. Analyt. Methods Geomech, v. 37, p. 2427–2455, 2013. https://doi.org/10.1002/nag.2142 [CrossRef] [Google Scholar]
  21. Diambra, A.; Ibraim, E.; Russel, A.; Wood, D. M. Modelling the undrained response of fibre reinforced sands. Soils and Foundations, v. 51, n. 4, p. 625–636, 2011. https://doi.org/10.3208/sandf.51.625 [Google Scholar]
  22. Ladd RS (1967). Preparing test specimens using undercompation. Geotechnical Testing Journal 1(1)40–57 [Google Scholar]
  23. Mitchell JK (1981) Soil improvement—state-of-the-art report. In: Proceedings 10th international conference on soil mechanics and foundation engineering. International Society of Soil Mechanics and Foundation Engineering, Stockholm, pp 509–565 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.