Open Access
Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 17002 | |
Number of page(s) | 8 | |
Section | Practical Prediction and Interpretation of Ground Response: Field Observation and Case Histories - Integrated Site Characterization | |
DOI | https://doi.org/10.1051/e3sconf/202454417002 | |
Published online | 02 July 2024 |
- Akinlotan, O. “Mineralogy and palaeoenvironments: the Weald Basin (Early Cretaceous), Southeast England”, Depos Rec, 3(2), pp. 187–200, 2017. https://doi.org/10.1002/dep2.32 [CrossRef] [Google Scholar]
- Altuhafi, F., C. O’Sullivan, and I. Cavarretta “Analysis of an image-based method to quantify the size and shape of sand particles”, J Geotech Geoenviron Eng, 139(8), pp. 1290–1307, 2013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000855 [CrossRef] [Google Scholar]
- Altuhafi, F.N., M.R. Coop, and V.N. Georgiannou “Effect of particle shape on the mechanical behavior of natural sands”, J Geotech Geoenviron Eng, 142(12), 04016071, 2016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569 [CrossRef] [Google Scholar]
- Altuhafi, F. N., R. J. Jardine, V. N. Georgiannou, and W. W. Moinet “Effects of particle breakage and stress reversal on the behaviour of sand around displacement piles”, Géotechnique, 68(6), pp. 546–555, 2018. https://doi.org/10.1680/jgeot.17.P.117 [CrossRef] [Google Scholar]
- American Society for Testing and Materials “ASTM D2487 Standard practice for classification of soils for engineering purposes (unified soil classification system)”, ASTM International, West Conshohocken, PA, USA, 2017. [Google Scholar]
- Basu, D., and R. Salgado “Load and resistance factor design of drilled shafts in sand”, J Geotech Geoenviron Eng, 138(12), pp. 1455–1469, 2012. [CrossRef] [Google Scholar]
- Basu, P., M. Prezzi, R. Salgado, and T. Chakraborty. “Shaft resistance and setup factors for piles jacked in clay”, J Geotech Geoenviron Eng, 140(3), 04013026, 2014. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001018 [CrossRef] [Google Scholar]
- Bellotti, R., M. Jamiolkowski, D. C. F. lo Presti, and D. A. O’Neill #“Anisotropy of small strain stiffness in Ticino sand”, Géotechnique, 46(1), pp. 115–131, 1996. https://doi.org/10.1680/geot.1996.46.1.115 [CrossRef] [Google Scholar]
- Bishop, A. W., G. E. Green, V. K. Garga, A. Andresen, and J. D. Brown “A new ring shear apparatus and its application to the measurement of residual strength”, Géotechnique, 21(4), pp. 273–328, 1971. https://doi.org/10.1680/geot.1971.21.4.273 [CrossRef] [Google Scholar]
- Bonaparte, R. “A time-dependent constitutive model for cohesive soils”, Doctoral, University of California, Berkeley, 1982. [Google Scholar]
- Carraro, J. A. H., M. Prezzi, and R. Salgado “Shear strength and stiffness of sands containing plastic or nonplastic fines”, J Geotech Geoenviron Eng, 135(9), pp. 1167–1178, 2009. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:9(1167) [CrossRef] [Google Scholar]
- Chakraborty, T. “Development of a clay constitutive model and its application to pile boundary value problems”, Doctoral, Purdue University, 2009. [online] Available at: [https://www.proquest.com/dissertations-theses/development-clay-constitutive-model-application/docview/304989818/se-2. [Google Scholar]
- Cho, G.-C., J. Dodds, and J. C. Santamarina “Particle shape effects on packing density, stiffness, and strength: natural and crushed sands”, J Geotech Geoenviron Eng, 132(5), pp. 591–602, 2006. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591) [CrossRef] [Google Scholar]
- Coop, M.R., and I.K. Lee “The behaviour of granular soils at elevated stresses”, In: Predictive Soil Mechanics (Wroth Memorial Symposium), Oxford, UK, 1993, pp. 186–198. [Google Scholar]
- Dafalias, Y. F., M. T. Manzari, and A. G. Papadimitriou “SANICLAY: simple anisotropic clay plasticity model”, Int J Numer Anal Methods Geomech, 30(12), pp. 1231–1257, 2006. https://doi.org/10.1002/nag.524 [CrossRef] [Google Scholar]
- Dagger, R., D. Saftner, and P. W. Mayne “Cone penetration test design guide for state geotechnical engineers”, Minnesota Department of Transportation, St. Paul, MN, USA, Rep. MN/RC 2018-32, 2018. [Google Scholar]
- Foye, K. C., G. Abou-Jaoude, M. Prezzi, and R. Salgado “Resistance factors for use in load and resistance factor design of driven pipe piles in sands”, J Geotech Geoenviron Eng, 135(1), pp. 1–13, 2009. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(1) [CrossRef] [Google Scholar]
- Ganju, E., F. Han, M. Prezzi, R. Salgado, and J. S. Pereira “Quantification of displacement and particle crushing around a penetrometer tip”, Geosci Front, 11(2), pp. 389–399, 2020. https://doi.org/10.1016/j.gsf.2019.05.007 [CrossRef] [Google Scholar]
- Gao, Z., J. Zhao, X.-S. Li, and Y. F. Dafalias “A critical state sand plasticity model accounting for fabric evolution”, Int J Numer Anal Methods Geomech, 38(4), pp. 370–390, 2014. https://doi.org/10.1002/nag.2211 [CrossRef] [Google Scholar]
- Gasparre, A. “Advanced laboratory characterization of London Clay”, Doctoral, Imperial College London, 2005. [online] Available at: [ http://hdl.handle.net/10044/1/45389 ]. [Google Scholar]
- Gens, A. “Stress–strain and strength of a low plasticity clay”, Doctoral, Imperial College London, 1982. [online] Available at: [ http://hdl.handle.net/10044/1/8410 ]. [Google Scholar]
- Han, F., R. Salgado, M. Prezzi, and J. Lim “Shaft and base resistance of non-displacement piles in sand”, Comput Geotech, 83, pp. 184–197, 2017a. [CrossRef] [Google Scholar]
- Han, F., M. Prezzi, R. Salgado, and M. Zaheer “Axial resistance of closed-ended steel-pipe piles driven in multilayered soil”, J Geotech Geoenviron Eng, 143(3), 04016102, 2017b. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001589 [CrossRef] [Google Scholar]
- Han, F., E. Ganju, R. Salgado, and M. Prezzi “Effects of interface roughness, particle geometry, and gradation on the sand-steel interface friction angle”, J Geotech Geoenviron Eng, 144(12), 04018096, 2018. [CrossRef] [Google Scholar]
- Han, F., E. Ganju, R. Salgado, and M. Prezzi “Comparison of the load response of closed-ended and open-ended pipe piles driven in gravelly sand”, Acta Geotech, 14, pp. 1785–1803, 2019. https://doi.org/10.1007/s11440-019-00863-1 [CrossRef] [Google Scholar]
- Herle, I., and G. Gudehus “Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies”, Mech Cohes-Frict Mater, 4(5), pp. 461–486, 1999. [CrossRef] [Google Scholar]
- Jardine, R., F. Chow, R. Overy, and J. Standing “ICP design methods for driven piles in sands and clays”, ICE Publishing (Thomas Telford Ltd), London, UK, 2005. [Google Scholar]
- Jovicic, V., and M. R. Coop “Stiffness of coarse-grained soils at small strains”, Géotechnique, 47(3), pp. 545–561, 1997. https://doi.org/10.1680/geot.1997.47.3.545 [CrossRef] [Google Scholar]
- Kirkgard, M., and P. Lade “Anisotropy of normally consolidated San Francisco Bay Mud”, Geotech Test J, 14(3), pp. 231–246, 1991. https://www.astm.org/gtj10568j.html [CrossRef] [Google Scholar]
- Krumbein, W. C., and L. L. Sloss “Stratigraphy and sedimentation”, W. H. Freeman and Company, San Francisco, CA, USA, 1951. [Google Scholar]
- Ladd, C. C., and J. Varallyay “The influence of the stress system on the behavior of saturated clays during undrained shear”, [Google Scholar]
- Massachusetts Institute of Technology, Cambridge, MA, USA, Rep. R65–11, 1965. [Google Scholar]
- Ladd, C. C., and L. Edgers “Consolidated-undrained direct simple shear tests on Boston Blue Clay”, Massachusetts Institute of Technology, Cambridge, USA, Rep. R72–82, 1972. [Google Scholar]
- Lehane, B. M., Y. Li, and R. Williams “Shaft capacity of displacement piles in clay using the cone penetration test”, J Geotech Geoenviron Eng, 139(2), pp. 253–266, 2013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000749 [CrossRef] [Google Scholar]
- Lehane, B. M., Z. Liu, E. J. Bittar, F. Nadim, S. Lacasse, N. Bozorgzadeh, R. Jardine, J.-C. Ballard, P. Carotenuto, K. Gavin, R. B. Gilbert, J. Bergan-Haavik, P. Jeanjean, and N. Morgan. “CPT-based axial capacity design method for driven piles in clay”, J Geotech Geoenviron Eng, 148(9), 04022069, 2022a.https://doi.org/10.1061/(ASCE)GT.1943-5606.0002847 [CrossRef] [Google Scholar]
- Lehane, B. M., E. Bittar, S. Lacasse, Z. Liu, and F. Nadim. “New CPT methods for evaluation of the axial capacity of driven piles”, In: Cone Penetration Testing 2022, 1st ed., CRC Press (Taylor & Francis Group), London, UK, 2022b, pp. 3–15. [Google Scholar]
- Lings, M. L., and M. S. Dietz “An improved direct shear apparatus for sand”, Géotechnique, 54(4), pp. 245–256, 2004. https://doi.org/10.1680/geot.2004.54.4.245 [CrossRef] [Google Scholar]
- Loukidis, D., and R. Salgado “Analysis of the shaft resistance of non-displacement piles in sand”, Géotechnique, 58(4), pp. 283–296, 2008. [CrossRef] [Google Scholar]
- Loukidis, D., and R. Salgado “Modeling sand response using two-surface plasticity”, Comput Geotech, 36(1–2), pp. 166–186,2009. https://doi.org/10.1016/j.compgeo.2008.02.009 [CrossRef] [Google Scholar]
- Lupini, J. F., A. E. Skinner, and P. R. Vaughan “The drained residual strength of cohesive soils”, Géotechnique, 31(2), pp. 181–213, 1981. https://doi.org/10.1680/geot.1981.31.2.181 [CrossRef] [Google Scholar]
- Maksimović, M. “On the residual shearing strength of clays”, Géotechnique, 39(2), pp. 347–351, 1989. https://doi.org/10.1680/geot.1989.39.2.347 [CrossRef] [Google Scholar]
- Mayne, P. W., and J. Peuchen “Evaluation of CPTU Nkt cone factor for undrained strength of clays”, In: Cone Penetration Testing 2018, 1st ed., Taylor & Francis Group, Oxfordshire, UK, 2018, pp. 423–429. [Google Scholar]
- Meehan, C. L. “An experimental study of the dynamic behavior of slickensided surfaces”, Doctoral, Virginia Polytechnic Institute and State University, 2006. [online] Available at: [http://hdl.handle.net/10919/26074]. [Google Scholar]
- Mitchell, J. K., and K. Soga “Fundamentals of soil behavior”, 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2005. [Google Scholar]
- Nishimura, S. “Laboratory study on anisotropy of natural London clay”, Doctoral, Imperial College London, 2006. [Google Scholar]
- Parry, R. H. G. “Triaxial compression and extension tests on remoulded saturated clay”, Géotechnique, 10(4), pp. 166–180, 1960. https://doi.org/10.1680/geot.1960.10.4.166 [CrossRef] [Google Scholar]
- Ramsey, N., R. Jardine, B. Lehane, and A. Ridley “A review of soil-steel interface testing with the ring shear apparatus”, In: Offshore Site Investigation and Foundation Behaviour (New Frontiers), London, UK, 1998, pp. 237–258. [Google Scholar]
- Riemer, M. F., R. B. Seed, P. G. Nicholson, and H. -L. Jong #“Steady state testing of loose sands: limiting minimum density”, J Geotech Eng, 116(2), pp. 332–337, 1990. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:2(332) [CrossRef] [Google Scholar]
- Robertson, P. K., R. G. Campanella, and A. Wightman “SPT-CPT correlations”, J Geotech Eng, 109(11), pp. 1449–1459, 1983. [CrossRef] [Google Scholar]
- Robertson, P. K. “Interpretation of cone penetration tests — a unified approach”, Can Geotech J, 46(11), pp. 1337–1355, 2009. https://doi.org/10.1139/T09-065 [CrossRef] [Google Scholar]
- Sakleshpur, V. A., M. Prezzi, R. Salgado, and M. Zaheer “CPT-based geotechnical design manual, Volume 2: CPT-based design of foundations (methods)”, Joint Transportation Research Program, West Lafayette, IN, USA, Rep. FHWA/IN/JTRP-2021/23, 2021a. [Google Scholar]
- Sakleshpur, V. A., M. Prezzi, R. Salgado, and M. Zaheer “CPT-based geotechnical design manual, Volume 3: CPT-based design of foundations (example problems)”, Joint Transportation Research Program, West Lafayette, IN, USA, Rep. FHWA/IN/JTRP-2021/24, 2021b. [Google Scholar]
- Salgado, R. “The role of analysis in non-displacement pile design”, In: Modern Trends in Geomechanics, Springer Proceedings in Physics (Volume 106), Springer, Berlin, Heidelberg, 2006, pp. 521–540. https://doi.org/10.1007/978-3-540-35724-7_30 [Google Scholar]
- Salgado, R., and M. Prezzi “Computation of cavity expansion pressure and penetration resistance in sands”, Int J Geomech, 7(4), pp. 251–265, 2007. [CrossRef] [Google Scholar]
- Salgado, R. “The engineering of foundations, slopes and retaining structures”, 2nd ed., CRC Press, Boca Raton, FL, 2022. https://doi.org/10.1201/b22079 [Google Scholar]
- Skempton, A. W. “Residual strength of clays in landslides, folded strata and the laboratory”, Géotechnique, 35(1), pp. 3–18, 1985. https://doi.org/10.1680/geot.1985.35.1.3 [CrossRef] [Google Scholar]
- Sladen, J. A., R. D. D’Hollander, and J. Krahn “The liquefaction of sands, a collapse surface approach”, Can Geotech J, 22(4), pp. 564–578, 1985. https://doi.org/10.1139/t85-076 [CrossRef] [Google Scholar]
- Sukumaran, B., and A. K. Ashmawy “Quantitative characterisation of the geometry of discrete particles”, Géotechnique, 51(7), pp. 619–627, 2001. https://doi.org/10.1680/geot.2001.51.7.619 [CrossRef] [Google Scholar]
- Tehrani, F. S., F. Han, R. Salgado, M. Prezzi, R. D. Tovar, and A. G. Castro “Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand”, Géotechnique, 66(5), pp. 386–400, 2016. https://doi.org/10.1680/jgeot.15.P.007 [CrossRef] [Google Scholar]
- Terzaghi, K., R. B. Peck, and G. Mesri “Soil mechanics in engineering practice”, 3rd ed., John Wiley & Sons, Inc., New York, USA, 1996. [Google Scholar]
- Thurairajah, A. “Some shear properties of kaolin and of sand”, Doctoral, University of Cambridge, 1962. https://doi.org/10.17863/CAM.31111 [Google Scholar]
- Tovar-Valencia, R. D., A. Galvis-Castro, R. Salgado, and M. Prezzi “Effect of surface roughness on the shaft resistance of displacement model piles in sand”, J Geotech Geoenviron Eng, 144(3), 04017120, 2018. [CrossRef] [Google Scholar]
- Tsomokos, A., and V. N. Georgiannou “Effect of grain shape and angularity on the undrained response of fine sands”, Can Geotech J, 47(5), pp. 539–551, 2010. https://doi.org/10.1139/T09-121 [CrossRef] [Google Scholar]
- Uthayakumar, M., and Y. P. Vaid “Static liquefaction of sands under multiaxial loading”, Can Geotech J, 35(2), pp. 273–283, 1998. https://doi.org/10.1139/t98-007 [CrossRef] [Google Scholar]
- Verdugo, R., and K. Ishihara “The steady state of sandy soils”, Soils Found, 36(2), pp. 81–91, 1996. https://doi.org/10.3208/sandf.36.2_81 [CrossRef] [Google Scholar]
- Wadell, H. “Volume, shape, and roundness of rock particles”, J Geol, 40(5), pp. 443–451, 1932. [CrossRef] [Google Scholar]
- Wadell, H. “Sphericity and roundness of rock particles”, J Geol, 41(3), pp. 310–331, 1933. [CrossRef] [Google Scholar]
- Yang, Z. X., R. J. Jardine, B. T. Zhu, P. Foray, and C. H. C. Tsuha “Sand grain crushing and interface shearing during displacement pile installation in sand”, Géotechnique, 60(6), pp. 469–482, 2010. https://doi.org/10.1680/geot.2010.60.6.469 [CrossRef] [Google Scholar]
- Yang, J., and L. M. Wei “Collapse of loose sand with the addition of fines: the role of particle shape”, Géotechnique, 62(12), pp. 1111–1125, 2012. [CrossRef] [Google Scholar]
- Zheng, J., and R. D. Hryciw “Traditional soil particle sphericity, roundness and surface roughness by computational geometry”, Géotechnique, 65(6), pp. 494–506, 2015. https://doi.org/10.1680/geot.14.P.192 [CrossRef] [Google Scholar]
- Zheng, J., and R. D. Hryciw “Index void ratios of sands from their intrinsic properties”, J Geotech Geoenviron Eng, 142(12), 06016019, 2016. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.