Open Access
Issue
E3S Web Conf.
Volume 556, 2024
International Conference on Recent Advances in Waste Minimization & Utilization-2024 (RAWMU-2024)
Article Number 01014
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202455601014
Published online 09 August 2024
  1. K. Kishor Patil, V. Randiv, S. Mulla, R. Parit, S. Mane, and S. Kadam, “DESIGN AND ANALYSIS OF SINGLE PLATE CLUTCH USING ANSYS,” Mobility and Vehicle Mechanics, vol. 46, no. 2, pp. 19–31, Oct. 2020, DOI: 10.24874/mvm.2020.46.02.02. [CrossRef] [Google Scholar]
  2. M. Hoić, M. Hrgetić, and J. Deur, “Design of a pin-on-disc-type CNC tribometer including an automotive dry clutch application,” Mechatronics, vol. 40, pp. 220–232, Dec. 2016, DOI: 10.1016/j.mechatronics.2016.10.016. [Google Scholar]
  3. R. Purohit, P. Khitoliya, and D. K. Koli, “Design and Finite Element Analysis of an Automotive Clutch Assembly,” Procedia Materials Science, vol. 6, pp. 490–502, 2014, DOI: 10.1016/j.mspro.2014.07.063. [CrossRef] [Google Scholar]
  4. K. Hema Latha, P. Usha Sri, and N. Seetharamaiah, “Design and Manufacturing Aspects of Magneto-rheological Fluid (MRF) Clutch,” Mater Today Proc, vol. 4, no. 2, pp. 1525–1534, 2017, DOI: 10.1016/j.matpr.2017.01.175. [CrossRef] [Google Scholar]
  5. P. Marklund and R. Larsson, “Wet clutch friction characteristics obtained from simplified pin on disc test,” Tribol Int, vol. 41, no. 9-10, pp. 824–830, Sep. 2008, DOI: 10.1016/j.triboint.2007.11.014. [CrossRef] [Google Scholar]
  6. H. Lü and D. Yu, “Optimization design of a disc brake system with hybrid uncertainties,” Advances in Engineering Software, vol. 98, pp. 112–122, Aug. 2016, DOI: 10.1016/j.advengsoft.2016.04.009. [CrossRef] [Google Scholar]
  7. X. Liang, L. Chen, Y. Wang, and L. Wan, “A proposed torque calculation model for multi-plate clutch considering boundary lubrication conditions and heat transfer,” Int J Heat Mass Transf, vol. 157, p. 119732, Aug. 2020, DOI: 10.1016/j.ijheatmasstransfer.2020.119732. [CrossRef] [Google Scholar]
  8. Q. Zou, C. Rao, G. Barber, B. Zhou, and Y. Wang, “Investigation of surface characteristics and tribological behavior of clutch plate materials,” Wear, vol. 302, no. 1-2, pp. 1378–1383, Apr. 2013, DOI: 10.1016/j.wear.2012.10.024. [CrossRef] [Google Scholar]
  9. A. S. Darmawan, J. Syarif, P. I. Purboputro, A. Yulianto, A. Hamid, and N. Noviyanto, “Single friction plate clutch design for cars with power of 77 kW and speed of 6000 rpm using finite element method,” Applied Research and Smart Technology (ARSTech), vol. 1, no. 1, pp. 22–27, Jun. 2020, DOI: 10.23917/arstech.v1i1.33. [CrossRef] [Google Scholar]
  10. O. I. Abdullah, J. Schlattmann, M. H. Majeed, and L. A. Sabri, “The temperatures distributions of a single-disc clutches using heat partitioning and total heat generated approaches,” Case Studies in Thermal Engineering, vol. 11, pp. 43–54, Mar. 2018, DOI: 10.1016/j.csite.2017.12.003. [CrossRef] [Google Scholar]
  11. M. Mohammed Mohaideen, P. Mani Maran, G. Rajesh Kumar, N. Uday Ranjan Goud, and V. Jagannath, “A study on single plate clutch disc using finite element method,” Mater Today Proc, Apr. 2023, DOI: 10.1016/j.matpr.2023.04.264. [Google Scholar]
  12. M. Jayaraj, S. K. Kumar, and S. Uppalapati, “Computational modeling and analysis of multi plate clutch,” Mater Today Proc, vol. 45, pp. 1867–1871, 2021, DOI: 10.1016/j.matpr.2020.09.067. [CrossRef] [Google Scholar]
  13. L. Yu, B. Ma, M. Chen, H. Li, and J. Liu, “Investigation on the thermodynamic characteristics of the deformed separate plate in a multi-disc clutch,” Eng Fail Anal, vol. 110, p. 104385, Mar. 2020, DOI: 10.1016/j.engfailanal.2020.104385. [CrossRef] [Google Scholar]
  14. M. Vishnu Vardhan, T. V. Sai Narendra, K. Ajay, B. Dhanraj, and C. Anil Kumar, “Design and analysis of single plate clutch by using non-ferrous materials,” Mater Today Proc, vol. 92, pp. 478–489, 2023, DOI: 10.1016/j.matpr.2023.03.596. [CrossRef] [Google Scholar]
  15. K. Virmani, T. Madhogaria, and P. Baskar, “Design optimization of friction lining of a clutch plate,” Mater Today Proc, vol. 46, pp. 8009–8024, 2021, DOI: 10.1016/j.matpr.2021.02.775. [CrossRef] [Google Scholar]
  16. M. Duzgun, “Investigation of thermo-structural behaviors of different ventilation applications on brake discs,” Journal of Mechanical Science and Technology, vol. 26, no. 1, pp. 235–240, Jan. 2012, DOI: 10.1007/s12206-011-0921-y. [CrossRef] [Google Scholar]
  17. W. Ost, P. De Baets, and J. Degrieck, “The tribological behaviour of paper friction plates for wet clutch application investigated on SAE#II and pin-on-disk test rigs,” Wear, vol. 249, no. 5-6, pp. 361–371, Jun. 2001, DOI: 10.1016/S0043-1648(01)00540-3. [CrossRef] [Google Scholar]
  18. M. Pisaturo and A. Senatore, “Simulation of engagement control in automotive dry-clutch and temperature field analysis through finite element model,” Appl Therm Eng, vol. 93, pp. 958–966, Jan. 2016, DOI: 10.1016/j.applthermaleng.2015.10.068. [CrossRef] [Google Scholar]
  19. A. Agrawal et al., “Optimization of Multi Plate Friction Clutch for Maximum Torque Transmitting Capacity Using Uniform Wear Theory,” Procedia Eng, vol. 97, pp. 1089–1096, 2014, DOI: 10.1016/j.proeng.2014.12.387. [CrossRef] [Google Scholar]
  20. Y. Wang, G. N. Zhu, and B. Y. Sun, “Topology Optimization in the Conceptual Design: Take the Frame of a Bender as Example,” Adv Mat Res, vol. 267, pp. 297–301, Jun. 2011, DOI: 10.4028/www.scientific.net/AMR.267.297. [Google Scholar]
  21. J. Bernhardt, A. Albers, and S. Ott, “Advanced ceramics as friction material in lubricated clutch systems,” Tribol Int, vol. 59, pp. 267–272, Mar. 2013, DOI: 10.1016/j.triboint.2012.08.002. [CrossRef] [Google Scholar]
  22. A. Kumar Shrivastava, R. Pandey, R. Khan Pathan, Y. Kumar Tembhurne, and T. Ravi Kiran, “Bike clutch plate thermal analysis with using different materials,” Mater Today Proc, vol. 47, pp. 7025–7029, 2021, DOI: 10.1016/j.matpr.2021.05.300. [CrossRef] [Google Scholar]
  23. M. Cavazzuti, A. Baldini, E. Bertocchi, D. Costi, E. Torricelli, and P. Moruzzi, “High performance automotive chassis design: a topology optimization based approach,” Structural and Multidisciplinary Optimization, vol. 44, no. 1, pp. 45–56, Jul. 2011, DOI: 10.1007/s00158-010-0578-7. [CrossRef] [Google Scholar]
  24. A. R. Yildiz, N. Kaya, F. Ozturk, and O. Alankus, “Optimal design of vehicle components using topology design and optimisation,” International Journal of Vehicle Design, vol. 34, no. 4, p. 387, 2004, DOI: 10.1504/IJVD.2004.004064. [CrossRef] [Google Scholar]
  25. R. J. Yang and A. I. Chahande, “Automotive applications of topology optimization,” Structural Optimization, vol. 9, no. 3-4, pp. 245–249, Jul. 1995, DOI: 10.1007/BF01743977. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.